Álvarez-Mozos, Jesús

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Álvarez-Mozos

First Name

Jesús

person.page.departamento

Ingeniería

person.page.instituteName

IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 42
  • PublicationOpen Access
    Inter-comparison of atmospheric correction methods on Sentinel-2 images applied to croplands
    (IEEE, 2018) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Ingeniería; Ingeniaritza
    Atmospheric correction of high resolution satellite scenery is a necessary preprocessing step for applications where bottom of atmosphere (BOA) reflectances are needed. The selection of the best atmospheric correction method to use on images acquired from new platforms, such as Sentinel-2, is essential to provide accurate BOA reflectances. In this work the performance of three atmospheric correction methods (6S, MAJA and SEN2COR) applied to Sentinel-2 scenes are compared by evaluating the resultant spectral signatures of six crop types on two specific dates, and their NDVI time series along a complete year. Although SEN2COR introduced greater corrections, especially in the infrared bands, the results suggest a varying performance of the methods depending on the land cover and the atmospheric conditions. Further research, particularly incorporating ground truth data, is recommended to rigorously validate the different atmospheric methods.
  • PublicationOpen Access
    A diachronic analysis of a changing landscape on the Duero river borderlands of Spain and Portugal combining remote sensing and ethnographic approaches
    (MDPI, 2021) Hearn, Kyle Patrick; Álvarez-Mozos, Jesús; Giza eta Hezkuntza Zientziak; Ingeniaritza; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ciencias Humanas y de la Educación; Ingeniería; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The Arribes del Duero region spans the border of both Spain and Portugal along the Duero River. On both sides of the border, the region boasts unique human‐influenced ecosystems. The borderland landscape is dotted with numerous villages that have a history of maintaining and managing an agrosilvopastoral use of the land. Unfortunately, the region in recent decades has suffered from massive outmigration, resulting in significant rural abandonment. Consequently, the oncemaintained landscape is evolving into a more homogenous vegetative one, resulting in a greater propensity for wildfires. This study utilizes an interdisciplinary, integrated approach of “bottom up” ethnography and “top down” remote sensing data from Landsat imagery, to characterize and document the diachronic vegetative changes on the landscape, as they are perceived by stakeholders and satellite spectral analysis. In both countries, stakeholders perceived the current changes and threats facing the landscape. Remote sensing analysis revealed an increase in forest cover throughout the region, and more advanced, drastic change on the Spanish side of the study area marked by wildfire and a rapidly declining population. Understanding the evolution and history of this rural landscape can provide more effective management and its sustainability.
  • PublicationOpen Access
    Influence of surface roughness measurement scale on radar backscattering in different agricultural soils
    (IEEE, 2017) Martínez de Aguirre Escobar, Alejandro; Álvarez-Mozos, Jesús; Lievens, Hans; Verhoest, Niko E. C.; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural
    Soil surface roughness strongly affects the scattering of microwaves on the soil surface and determines the backscattering coefficient (σ 0 ) observed by radar sensors. Previous studies have shown important scale issues that compromise the measurement and parameterization of roughness especially in agricultural soils. The objective of this paper was to determine the roughness scales involved in the backscattering process over agricultural soils. With this aim, a database of 132 5-m profiles taken on agricultural soils with different tillage conditions was used. These measurements were acquired coinciding with a series of ENVISAT/ASAR observations. Roughness profiles were processed considering three different scaling issues: 1) influence of measurement range; 2) influence of low-frequency roughness components; and 3) influence of high-frequency roughness components. For each of these issues, eight different roughness parameters were computed and the following aspects were evaluated: 1) roughness parameters values; 2) correlation with σ 0 ; and 3) goodness-of-fit of the Oh model. Most parameters had a significant correlation with σ 0 especially the fractal dimension, the peak frequency, and the initial slope of the autocorrelation function. These parameters had higher correlations than classical parameters such as the standard deviation of surface heights or the correlation length. Very small differences were observed when longer than 1-m profiles were used as well as when small-scale roughness components (<;5 cm) or large-scale roughness components (>100 cm) were disregarded. In conclusion, the medium-frequency roughness components (scale of 5-100 cm) seem to be the most influential scales in the radar backscattering process on agricultural soils.
  • PublicationOpen Access
    Multitemporal evaluation of topographic correction algorithms using synthetic images
    (SPIE, 2012) Sola Torralba, Ion; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Torres Escribano, José Luis; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Land cover classification and quantitative analysis of multispectral data in mountainous regions is considerably hampered by the influence of topography on the spectral response pattern. In the last years, different topographic correction (TOC) algorithms have been proposed to correct illumination differences between sunny and shaded areas observed by optical remote sensors. Although the available number of TOC methods is high, the evaluation of their performance usually relies on the existence of precise land cover information, and a standardised and objective evaluation procedure has not been proposed yet. Besides, previous TOC assessment studies only considered a limited set of illumination conditions, normally assuming favourable illumination conditions. This paper presents a multitemporal evaluation of TOC methods based on synthetically generated images in order to evaluate the influence of solar angles on the performance of TOC methods. These synthetic images represent the radiance an optical sensor would receive under specific geometric and temporal acquisition conditions and assuming a certain land-cover type. A method for creating synthetic images using state-of-the-art irradiance models has been tested for different periods of the year, which entails a variety of solar angles. Considering the real topography of a specific area a Synthetic Real image (SR) is obtained, and considering the relief of this area as being completely flat a Synthetic Horizontal image (SH) is obtained. The comparison between corrected image obtained applying a TOC method to SR image and SH image of the same area, i.e. considered the ideal correction, allows assessing the performance of each TOC algorithm.
  • PublicationOpen Access
    Automatic detection of uprooted orchards based on orthophoto texture analysis
    (MDPI, 2017) Ciriza Labiano, Raquel; Sola Torralba, Ion; Albizua, Lourdes; Álvarez-Mozos, Jesús; González de Audícana Amenábar, María; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Permanent crops, such as olive groves, vineyards and fruit trees, are important in European agriculture because of their spatial and economic relevance. Agricultural geographical databases (AGDBs) are commonly used by public bodies to gain knowledge of the extension covered by these crops and to manage related agricultural subsidies and inspections. However, the updating of these databases is mostly based on photointerpretation, and thus keeping this information up-to-date is very costly in terms of time and money. This paper describes a methodology for automatic detection of uprooted orchards (parcels where fruit trees have been eliminated) based on the textural classification of orthophotos with a spatial resolution of 0.25 m. The textural features used for this classification were derived from the grey level co-occurrence matrix (GLCM) and wavelet transform, and were selected through principal components (PCA) and separability analyses. Next, a Discriminant Analysis classification algorithm was used to detect uprooted orchards. Entropy, contrast and correlation were found to be the most informative textural features obtained from the co-occurrence matrix. The minimum and standard deviation in plane 3 were the selected features based on wavelet transform. The classification based on these features achieved a true positive rate (TPR) of over 80% and an accuracy (A) of over 88%. As a result, this methodology enabled reducing the number of fields to photointerpret by 60–85%, depending on the membership threshold value selected. The proposed approach could be easily adopted by different stakeholders and could increase significantly the efficiency of agricultural database updating tasks.
  • PublicationOpen Access
    Clasificación de usos y cubiertas del suelo y análisis de cambios en los alrededores de la Reserva Ecológica Manglares Churute (Ecuador) mediante una serie de imágenes Sentinel-1
    (Universidad Politécnica de Valencia, 2020) Vélez Alvarado, Diana; Álvarez-Mozos, Jesús; Ingeniería; Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    La gestión de las áreas naturales protegidas frecuentemente obvia la importancia que tiene el territorio que rodea el perímetro del espacio protegido (zona de amortiguación). Estas zonas pueden ser el origen de impactos que amenacen el estado de conservación de los ecosistemas protegidos. En este artículo se describe un caso de estudio centrado en la Reserva Ecológica Manglares Churute (REMCh) de Ecuador, en el que se utilizó una serie temporal de imágenes Sentinel-1 para clasificar los usos y cubiertas del suelo y para analizar los cambios ocurridos en el periodo 2015-2018. Tras procesar la serie de imágenes y delinear el conjunto de zonas de entrenamiento sobre los principales usos y cubiertas se implementó un algoritmo de clasificación Random Forests (RF), cuyos parámetros fueron optimizados mediante una validación cruzada con el conjunto de datos de entrenamiento (70% de la verdad campo). El 30% restante se utilizó para validar la clasificación realizada, logrando una fiabilidad global del 84%, un coeficiente Kappa de 0,8 y unas métricas de rendimiento por clase satisfactorias para los principales cultivos y usos del suelo. Los resultados fueron peores para las clases más heterogéneas y minoritarias, no obstante, se considera que la clasificación fue lo suficientemente precisa para realizar el análisis de cambios perseguido. Entre 2015 y 2018 se constató un aumento en la superficie destinada a usos intensivos como el cultivo de camarón blanco y la caña de azúcar, en detrimento de otros cultivos tradicionales como el arroz o el banano. Aunque estos cambios se produjeron en las zonas que rodean al área natural protegida, pueden causar un deterioro de la calidad del agua debido al uso de fertilizantes y pesticidas, por tanto, se recomienda prestar atención a estas zonas de amortiguamiento a la hora de diseñar políticas e instrumentos adecuados de protección medioambiental.
  • PublicationOpen Access
    Influence of surface roughness sample size for C-band SAR backscatter applications on agricultural soils
    (IEEE, 2017) Martínez de Aguirre Escobar, Alejandro; Álvarez-Mozos, Jesús; Lievens, Hans; Verhoest, Niko E. C.; Giménez Díaz, Rafael; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Proyectos e Ingeniería Rural
    Soil surface roughness determines the backscatter coefficient observed by radar sensors. The objective of this letter was to determine the surface roughness sample size required in synthetic aperture radar applications and to provide some guidelines on roughness characterization in agricultural soils for these applications. With this aim, a data set consisting of ten ENVISAT/ASAR observations acquired coinciding with soil moisture and surface roughness surveys has been processed. The analysis consisted of: 1) assessing the accuracies of roughness parameters s and l depending on the number of 1-m-long profiles measured per field; 2) computing the correlation of field average roughness parameters with backscatter observations; and 3) evaluating the goodness of fit of three widely used backscatter models, i.e., integral equation model (IEM), geometrical optics model (GOM), and Oh model. The results obtained illustrate a different behavior of the two roughness parameters. A minimum of 10-15 profiles can be considered sufficient for an accurate determination of s, while 20 profiles might still be not enough for accurately estimating l. The correlation analysis revealed a clear sensitivity of backscatter to surface roughness. For sample sizes >15 profiles, R values were as high as 0.6 for s and ~0.35 for l, while for smaller sample sizes R values dropped significantly. Similar results were obtained when applying the backscatter models, with enhanced model precision for larger sample sizes. However, IEM and GOM results were poorer than those obtained with the Oh model and more affected by lower sample sizes, probably due to larger uncertainly of l.
  • PublicationOpen Access
    Comparison of digital terrain models obtained with LiDAR and photogrammetry
    (Springer, 2020) Martínez de Aguirre Escobar, Alejandro; García Morales, Víctor; Álvarez-Mozos, Jesús; Ingeniería; Ingeniaritza
    Airborne LiDAR sensors capture three-dimensional information of the Earth, useful for obtaining high accuracy Digital Terrain Models (DTM). The Spanish National Plan for Aerial Orthophotography (PNOA) is an initiative of the Spanish Geographical Institute whereby nationwide LiDAR datasets are periodically acquired and made available to the public as.las files and value added products (e.g., DTM). The objective of this study is to assess the added value of PNOA LiDAR DTMs by comparing them to DTMs obtained through classical photogrammetric techniques. With this aim, four areas of interest were selected in Navarre (north of Spain), in areas with challenging characteristics such as forests, karst landforms, agricultural terraces and ravines. A 5 × 5 m DTM obtained with classical photogrammetry in 2008 was compared with a LiDAR DTM of the same pixel size obtained in 2011, assuming no significant changes occurred in this time. Height differences were evaluated, as well as slope, aspect and curvature differences. Besides, a multiresolution analysis was carried out to quantify how DTM smoothing affected height variations between neighbor pixels, measured with the standard deviation on a 5 × 5 window. The results obtained showed that the LiDAR DTMs provided an enhanced description of topography, particularly under forests and in areas with complex topography.
  • PublicationOpen Access
    Crop classification based on temporal signatures of Sentinel-1 observations over Navarre province, Spain
    (MDPI, 2020) Arias Cuenca, María; Campo-Bescós, Miguel; Álvarez-Mozos, Jesús; Ingeniería; Ingeniaritza
    Crop classification provides relevant information for crop management, food security assurance and agricultural policy design. The availability of Sentinel-1 image time series, with a very short revisit time and high spatial resolution, has great potential for crop classification in regions with pervasive cloud cover. Dense image time series enable the implementation of supervised crop classification schemes based on the comparison of the time series of the element to classify with the temporal signatures of the considered crops. The main objective of this study is to investigate the performance of a supervised crop classification approach based on crop temporal signatures obtained from Sentinel-1 time series in a challenging case study with a large number of crops and a high heterogeneity in terms of agro-climatic conditions and field sizes. The case study considered a large dataset on the Spanish province of Navarre in the framework of the verification of Common Agricultural Policy (CAP) subsidies. Navarre presents a large agro-climatic diversity with persistent cloud cover areas, and therefore, the technique was implemented both at the provincial and regional scale. In total, 14 crop classes were considered, including different winter crops, summer crops, permanent crops and fallow. Classification results varied depending on the set of input features considered, obtaining Overall Accuracies higher than 70% when the three (VH, VV and VH/VV) channels were used as the input. Crops exhibiting singularities in their temporal signatures were more easily identified, with barley, rice, corn and wheat achieving F1-scores above 75%. The size of fields severely affected classification performance, with ~14% better classification performance for larger fields (>1 ha) in comparison to smaller fields (<0.5 ha). Results improved when agro-climatic diversity was taken into account through regional stratification. It was observed that regions with a higher diversity of crop types, management techniques and a larger proportion of fallow fields obtained lower accuracies. The approach is simple and can be easily implemented operationally to aid CAP inspection procedures or for other purposes. © 2020 by the authors.
  • PublicationOpen Access
    Clasificación de cultivos en la zona media de Navarra mediante imágenes radar polarimétricas
    (Universidad Politécnica de Valencia, 2010) Larrañaga Urien, Arantzazu; Albizua, Lourdes; Álvarez-Mozos, Jesús; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak
    Navarra lleva años empleando la técnica de clasificación supervisada de imágenes multiespectrales de satélite para la realización de la estadística agraria. La cubierta nubosa, muy habitual en esta zona, limita e incluso imposibilita el uso de imágenes ópticas para este fin. Los sensores radar representan una alternativa interesante, dado que a las longitudes de onda que trabajan, la cobertura nubosa es transparente, por lo que la nubosidad no supone ningún tipo de limitación para su empleo. Por otro lado, los sensores radar de nueva generación (por ejemplo ALOS/PALSAR o RADARSAT- 2), incorporan mejoras importantes respecto a sus predecesores (ERS-1/-2 o RADARSAT-1). En lo que respecta a la clasificación de cultivos, los sensores radar que adquieren imágenes en múltiples polarizaciones resultan especialmente interesantes. El principal objetivo de este trabajo es evaluar la viabilidad del empleo de observaciones de teledetección radar de polarización múltiple en la clasificación de cultivos de la zona media de Navarra. Para ello, se han utilizado dos imágenes ALOS/PALSAR. Una vez realizado un detallado análisis polarimétrico, se han obtenido las firmas o signaturas de los distintos cultivos de secano y de regadío por separado y se ha realizado una clasificación supervisada. La clasificación obtenida se ha comparado con la verdad campo resultando en un índice Kappa y fiabilidad global de 0,52 y 85% respectivamente.