Luis Pérez, Carmelo Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Luis Pérez

First Name

Carmelo Javier

person.page.departamento

Ingeniería

person.page.instituteName

INAMAT2 - Institute for Advanced Materials and Mathematics

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 43
  • PublicationOpen Access
    Análisis de la influencia de las condiciones de proceso sobre el acabado superficial de materiales cerámicos fabricados por electroerosión
    (CENIM, 2004) Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    El mecanizado por electroerosión (en inglés, Electrical Discharge Machining, EDM) constituye una alternativa emergente frente a otros procesos de fabricación de materiales cerámicos conductores, tales como: mecanizado por láser, mecanizado electroquímico, chorro de agua con abrasivos, mecanizado por ultrasonidos y rectificado con muela de diamante. Debido a su interés en el ámbito industrial, en este trabajo se lleva a cabo un estudio de la influencia de las condiciones de operación sobre el aspecto superficial de tres materiales cerámicos conductores: carburo de boro prensado en caliente (B4C), carburo de silicio infiltrado con silicio (SiSiC) y carburo de wolframio en matriz metálica de cobalto (WC-Co), electroerosionados bajo diferentes condiciones de mecanizado y para el caso particular de regímenes de acabado (Ra ≤ 1 μm).
  • PublicationOpen Access
    A proposal of a constitutive description for aluminium alloys in both cold and hot working
    (MDPI, 2016) León Iriarte, Javier; Luis Pérez, Carmelo Javier; Fuertes Bonel, Juan Pablo; Puertas Arbizu, Ignacio; Luri Irigoyen, Rodrigo; Salcedo Pérez, Daniel; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    The most important difficulties when the behaviour of a part that is subjected to external mechanical forces is simulated deal with the determination of both the material thermo-mechanical properties and its boundary conditions. The accuracy of the results obtained from the simulation is directly related to the knowledge of the flow stress curve. Therefore, the determination of a material flow rule which is valid for both a wide temperature range and different initial deformation conditions in the starting material presents a great deal of interest when simulation results close to the experimental values are required to be obtained. In this present study, a novel flow stress curve is proposed that is able to accurately predict the behaviour of both materials with no previous accumulated strain and materials that have been previously subjected to severe plastic deformation processes. Moreover, it is possible to use it both for hot and cold working. The results are analysed in a wide test temperature range, which varies from room temperature to 300 °C, and from material previously processed by angular channel extrusion or with no previous strain accumulated. It is shown that the flow rule proposed is effective to model the material behaviour in a wide temperature range and it makes it possible to take the recrystallization phenomena that appear in previously deformed materials into account. In addition, the results obtained are compared with those predicted by other flow rules that exist in the prior literature. Furthermore, the study is complemented with finite element simulations and with a comparison between simulation and experimental results.
  • PublicationOpen Access
    Design and optimization of the dies for the isothermal forging of a cam
    (Elsevier, 2015) Salcedo Pérez, Daniel; Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; León Iriarte, Javier; Puertas Arbizu, Ignacio; Fuertes Bonel, Juan Pablo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In the present study, the design of the dies required for the isothermal forging of a cam is analysed by finite volume method. Specifically, cams are of great importance in automotive industry, where a lower weight and an improvement in the lubrication or in the materials to be in contact lead to a significant reduction in the fuel cost. The flow stress curves of one Al-Mg alloy were firstly determined by using compression tests. Once these flow stress curves were obtained, FV simulation was employed. In the forging process, the optimum die configuration has been selected. To this end, several aspects have been taken into account such as the force required for the forging, the correct die filling, the introduced plastic strain and the damage imparted to the billet.
  • PublicationOpen Access
    Design and mechanical properties analysis of AA5083 ultrafine grained cams
    (MDPI, 2017) Salcedo Pérez, Daniel; Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; Puertas Arbizu, Ignacio; León Iriarte, Javier; Fuertes Bonel, Juan Pablo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This present research work deals with the development of ultrafine grained cams obtained from previously ECAP (Equal Channel Angular Pressing)-processed material and manufactured by isothermal forging. The design and the manufacturing of the dies required for the isothermal forging of the cams are shown. Optimization techniques based on the combination of design of experiments, finite element and finite volume simulations are employed to develop the dies. A comparison is made between the mechanical properties obtained with the cams manufactured from material with no previous deformation and with those from previously SPD (Severe Plastic Deformation)-processed material. In addition, a comparative study between the experimental results and those obtained from the simulations is carried out. It has been demonstrated that it is possible to obtain ultrafine grained cams with an increase of 10.3% in the microhardness mean value as compared to that obtained from material with no previous deformation.
  • PublicationOpen Access
    Analysis of AM parameters on surface roughness obtained in PLA parts printed with FFF technology
    (MDPI, 2021) Buj Corral, Irene; Sánchez Casas, Xabier; Luis Pérez, Carmelo Javier; Ingeniería; Ingeniaritza
    Fused filament fabrication (FFF) 3D printing technology allows very complex parts to be obtained at a relatively low cost and in reduced manufacturing times. In the present work, the effect of main 3D printing parameters on roughness obtained in curved surfaces is addressed. Polylactic acid (PLA) hemispherical cups were printed with a shape similar to that of the acetabular part of the hip prostheses. Different experiments were performed according to a factorial design of experiments, with nozzle diameter, temperature, layer height, print speed and extrusion multiplier as variables. Different roughness parameters were measured—Ra, Rz, Rku, Rsk—both on the outer surface and on the inner surface of the parts. Arithmetical mean roughness value Ra and greatest height of the roughness profile Rz are usually employed to compare the surface finish among different manufacturing processes. However, they do not provide information about the shape of the roughness profile. For this purpose, in the present work kurtosis Rku and skewness Rsk were used. If the height distribution in a roughness profile follows a normal law, the Rku parameter will take a value of 3. If the profile distribution is symmetrical, the Rsk parameter will take a value of 0. Adaptive neural fuzzy inference system (ANFIS) models were obtained for each response. Such models are often employed to model different manufacturing processes, but their use has not yet been extended to 3D printing processes. All roughness parameters studied depended mainly on layer height, followed by nozzle diameter. In the present work, as a general trend, Rsk was close to but lower than 0, while Rku was slightly lower than 3. This corresponds to slightly higher valleys than peaks, with a rounded height distribution to some degree.
  • PublicationOpen Access
    A study on the EDM drilling of reaction-bonded silicon carbide using different electrode materials
    (Springer, 2023) Torres Salcedo, Alexia; Luis Pérez, Carmelo Javier; Puertas Arbizu, Ignacio; Corres Sanz, Jesús María; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Today, there is a growing demand for efficient hole manufacturing technology in many industries such as aeronautics, automotive and nuclear, among others. Thus, the present study deals with the machining of through holes on SiSiC advanced ceramic by using Electrical Discharge Machining (EDM) drilling technology. Since recommendations related to the electrode characteristics and settings parameters are found to be scant for the industrial use of EDM drilling of SiSiC ceramics, this research work comes to cover this gap as it presents a complete study focused on the influence on different electrodes under rough and finish machining conditions. In particular, the influence of four electrodes materials (copper, copper-tungsten, graphite and copper infiltrated graphite) and three different electrode diameters ranging from 2 to 4 mm are investigated. In addition, the rotational speed of the electrode is also analysed. From the experimental results, both electrode material and machining regime, seem to be the most relevant factors of all. In the case of 2 mm diameter electrode, material removal rate (MRR) with Cu electrode was, approximately, 4.5 times higher than that obtained with a C electrode. In fact, it was found that copper electrode rotating at 20 rpm combined with high values of discharge energy (I = 2 A; ti = 70 µs) is the most economical option in terms of production cost and production time, as it gives a high MRR of 0.4754 mm3/min and a minimum electrode wear (EW) value of 7.52%. Moreover, slightly higher values of MRR were achieved for CuC electrode compared to those obtained with C electrode, indicating that the addition of Cu in the electrode contributes to a greater removal of material. However, a value of Ra of 0.37 µm could be obtained by setting low current intensity values (I = 0.5 A; ti = 45 µs) combined with C electrodes and with no rotation.
  • PublicationOpen Access
    Study of the industrial application of diamond-like carbon coatings deposited on advanced tool steels
    (MDPI, 2024) Barba Areso, Eneko; Claver Alba, Adrián; Montalá, Francesc; Luis Pérez, Carmelo Javier; Sala, Neus; Colominas, Carles; García Lorente, José Antonio; Ingeniería; Ingeniaritza
    The utilization of diamond-like carbon (DLC) coatings has emerged as a promising strategy to enhance the performance, durability, and functionality of industrial tools and components. Recognized for their exceptional attributes such as hardness, wear resistance, low friction, and biocompatibility, DLC coatings have achieved widespread acclaim for their potential to improve the capabilities of tool steels for different applications. This present study shows a comprehensive investigation into the application of DLC coatings on a diverse range of tool steel substrates, encompassing 1.2379, 1.2358, Caldie, K340, HWS, and Vanadis 4. The main aim is to show the effects of DLC coatings on these substrates and to provide an in-depth analysis of their properties during forming processes. Furthermore, this study explores the practical utilization of DLC-coated tool steel components, with a particular focus on their role in cold forming dies. Additionally, the study reviews the application of duplex treatments involving plasma nitriding to enhance DLC coating performance. To sum up, this study pursues a threefold objective: to investigate DLC coatings’ performance on diverse tool steel substrates; to assess the potential for improvement through nitriding; and to evaluate the behavior of DLC coatings in the cold stamping of S235 steel, which is of great technological and industrial interest to the cold forging sector.
  • PublicationOpen Access
    EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes
    (Springer, 2016) Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería; Ingeniaritza
  • PublicationOpen Access
    Optimization and modeling of ZrB2 ceramic processing by EDM for high-performance industrial applications
    (Elsevier, 2025-04-11) Luis Pérez, Carmelo Javier; Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2
    This study investigates the Electrical Discharge Machining (EDM) of zirconium diboride (ZrB2), a novel conductive ceramic with exceptional properties, including high temperature resistance, excellent thermal conductivity, and remarkable hardness. These properties make ZrB2 highly suitable for extreme environments, such as aerospace and nuclear applications. To the best of our knowledge, no comprehensive studies have addressed the manufacturing of ZrB2 parts by EDM, positioning this research as a cutting-edge contribution. Two electrode materials, graphite (C) and copper-graphite (Cu–C), were used to analyze the material removal rate (MRR) and surface roughness (Ra) as functions of current intensity (I), pulse time (ti), and duty cycle (η). Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) were used to model the response variables. While MLR was effective for MRR (R2 > 0.9), ANN outperformed it in predicting Ra, especially for Cu–C electrodes (R2 = 0.9366 vs. 0.3847 for MLR). Current intensity was the most influential parameter for MRR, while pulse time significantly affected Ra. Residual analysis confirmed ANN superior accuracy for Ra, with residuals below ±1 vs. ±2 for MLR. The study culminated in the successful EDM manufacture of a ZrB2 hexagonal nut, employing optimized parameters (I = 6 A, ti = 50 μs, η = 0.3, for the C electrode) derived using ANN models and particle swarm optimization. This result demonstrates the EDM process ability to produce high-precision components with complex geometries, showcasing its versatility and industrial potential. Therefore, this study broadens the understanding of ZrB2 machinability and expands its applications in advanced technologies.
  • PublicationOpen Access
    Comparative study of the damage attained with different specimens by FEM
    (Elsevier, 2015) Fuertes Bonel, Juan Pablo; Luri Irigoyen, Rodrigo; Luis Pérez, Carmelo Javier; Salcedo Pérez, Daniel; León Iriarte, Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This present research work deals with the analysis of the design of different specimen geometries so that by finite volume simulations, the appearance of cracks may be predicted in the case of forging processes. To this end, each of the geometries selected are studied by means of compression tests between plane shape dies in the same conditions (T = 25 ºC). On the one hand, a value for the critical damage value is obtained by applying the Cockroft-Latham’s criterion and on the other hand, a damage distribution along all the specimen volume with the aim of defining a specimen which shows the most likely place for the crack to appear. This crack location may be also determined through visual inspection with the aim of being able to evaluate this experimentally in the near future.