Luis Pérez, Carmelo Javier

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Luis Pérez

First Name

Carmelo Javier

person.page.departamento

Ingeniería

person.page.instituteName

INAMAT2 - Institute for Advanced Materials and Mathematics

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 44
  • PublicationOpen Access
    Study of the industrial application of diamond-like carbon coatings deposited on advanced tool steels
    (MDPI, 2024) Barba Areso, Eneko; Claver Alba, Adrián; Montalá, Francesc; Luis Pérez, Carmelo Javier; Sala, Neus; Colominas, Carles; García Lorente, José Antonio; Ingeniería; Ingeniaritza
    The utilization of diamond-like carbon (DLC) coatings has emerged as a promising strategy to enhance the performance, durability, and functionality of industrial tools and components. Recognized for their exceptional attributes such as hardness, wear resistance, low friction, and biocompatibility, DLC coatings have achieved widespread acclaim for their potential to improve the capabilities of tool steels for different applications. This present study shows a comprehensive investigation into the application of DLC coatings on a diverse range of tool steel substrates, encompassing 1.2379, 1.2358, Caldie, K340, HWS, and Vanadis 4. The main aim is to show the effects of DLC coatings on these substrates and to provide an in-depth analysis of their properties during forming processes. Furthermore, this study explores the practical utilization of DLC-coated tool steel components, with a particular focus on their role in cold forming dies. Additionally, the study reviews the application of duplex treatments involving plasma nitriding to enhance DLC coating performance. To sum up, this study pursues a threefold objective: to investigate DLC coatings’ performance on diverse tool steel substrates; to assess the potential for improvement through nitriding; and to evaluate the behavior of DLC coatings in the cold stamping of S235 steel, which is of great technological and industrial interest to the cold forging sector.
  • PublicationOpen Access
    Elemento de refrigeración de material cerámico electroconductor
    (2024) Luis Pérez, Carmelo Javier; Puertas Arbizu, Ignacio; Torres Salcedo, Alexia; Ingeniería; Ingeniaritza
    Elemento de refrigeración de material cerámico electroconductor que comprende un cuerpo (1) con al menos un orificio (2) pasante y/o al menos una ranura (3) pasante, configurados para el paso de un fluido de refrigeración, donde al menos un orificio (2) y/o la al menos una ranura (3) están fabricados mediante electroerosión por penetración sobre el cuerpo (1) de material cerámico electroconductor.
  • PublicationOpen Access
    Study of spacing surface roughness parameters and proposal of a wear behaviour criterion in die-sinking EDM of cobalt-bonded tungsten carbide
    (Springer, 2025-07-16) Puertas Arbizu, Ignacio; Salvide-González, Unai; Luis Pérez, Carmelo Javier; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PRO-UPNA12514
    Surface roughness analysis is crucial for assessing machining quality, with most studies emphasizing amplitude parameters due to their industrial relevance. However, spacing roughness parameters, such as Sm (mean spacing of profile irregularities) and Pc (peak count), provide complementary insights into the horizontal distribution of surface features, which are often overlooked. This study investigates the effect of current intensity (I) and pulse time (ti) on Sm and Pc during the die-sinking EDM of cobalt-bonded tungsten carbide (94WC-6Co), a material widely used in wear-intensive applications due to its exceptional hardness. A multilevel design of experiments (DOE) was performed, varying I from 2 to 6 A and ti from 10 to 100 µs. Results demonstrated a strong relationship between machining conditions and both parameters, with higher current intensities increasing feature spacing (Sm) and reducing peak number (Pc). The optimal surface quality, defined by Sm = 30 µm and Pc = 337 cm⁻1, was achieved at I = 2 A and ti = 10 µs. Polynomial regression models provided predictive insights for process optimization. Scanning Electron Microscopy (SEM) analysis validated these results, revealing distinct surface morphology variations associated with the machining parameters. Finally, an attempt to define a criterion for predicting wear behaviour under the experimental conditions considered in this study will be made, where this will be based on Pc and two additional surface roughness parameters such as Rsk (skewness) and Rku (kurtosis).
  • PublicationOpen Access
    Surface roughness analysis on the dry turning of an Al-Cu alloy
    (Elsevier, 2015) Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Nowadays, surface finish has become an important indicator of quality and precision in manufacturing processes and it is considered one of the most important parameter in Industry. In this present study, the influence of different machining parameters on surface roughness has been analyzed. All these parameters have been studied in terms of depth of cut (ap), feed rate (F), cutting speed (Vc) and tool radius (R). A 2030-T4 aluminium alloy has been selected. Moreover, Design of Experiments (DOE) techniques have been used to predict the surface quality in advance and to select the optimal turning conditions. The experimental results revealed that for dry turning operations and for the amplitude parameters, the most significant factor was the interaction effect between the depth of cut and the feed rate. In addition, for facing operations, the feed rate turned out to be the most statistically influential factor of all the surface roughness parameters.
  • PublicationOpen Access
    Análisis de la influencia del tratamiento térmico de envejecimiento en la modificación de las propiedades mecánicas de la aleación AA6060 procesada por ECAE
    (CENIM, 2011) Pérez Ruiz, Iván; Luis Pérez, Carmelo Javier; Luri Irigoyen, Rodrigo; León Iriarte, Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    En el presente trabajo se ha realizado un estudio de la modificación de las propiedades mecánicas de la aleación de aluminio AA6060 F, al ser deformada mediante deformación plástica severa empleando el proceso de extrusión en canal angular (ECAE). Asimismo, se ha efectuado un estudio del efecto del envejecimiento artificial sobre la modificación de dichas propiedades mecánicas. Para ello, se han realizado tratamientos térmicos a diferentes temperaturas y tiempos de permanencia, efectuando mediciones de dureza, ensayos de tracción, ensayos con péndulo Charpy y técnicas de revelado metalográfico, para conocer los comportamientos mecánicos y el estado del material. Existe un elevado número de publicaciones, que han analizado el efecto de tratamientos térmicos de envejecimiento en aleaciones de la serie 6000. Sin embargo, la aleación AA6060 no ha sido tan ampliamente estudiada. Por ello, en este trabajo se parte de una aleación comercial AA6060 en estado de bruto de colada, lo cual no ha sido estudiado hasta la fecha.
  • PublicationOpen Access
    Comparative study of the damage attained with different specimens by FEM
    (Elsevier, 2015) Fuertes Bonel, Juan Pablo; Luri Irigoyen, Rodrigo; Luis Pérez, Carmelo Javier; Salcedo Pérez, Daniel; León Iriarte, Javier; Puertas Arbizu, Ignacio; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    This present research work deals with the analysis of the design of different specimen geometries so that by finite volume simulations, the appearance of cracks may be predicted in the case of forging processes. To this end, each of the geometries selected are studied by means of compression tests between plane shape dies in the same conditions (T = 25 ºC). On the one hand, a value for the critical damage value is obtained by applying the Cockroft-Latham’s criterion and on the other hand, a damage distribution along all the specimen volume with the aim of defining a specimen which shows the most likely place for the crack to appear. This crack location may be also determined through visual inspection with the aim of being able to evaluate this experimentally in the near future.
  • PublicationOpen Access
    Analytical modelling of energy density and optimization of the EDM machining parameters of Inconel 600
    (MDPI, 2017) Torres Salcedo, Alexia; Puertas Arbizu, Ignacio; Luis Pérez, Carmelo Javier; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    In this present research work, a new modelling of energy density in EDM (Electrical Discharge Machining) is proposed. Energy density can be defined as the amount of energy needed to get a unit volume of material removed, and for its modelling, the whole EDM process has been taken into account. This new definition lets us quantify the energy density that is being absorbed by the workpiece and the electrode. Results are compared to those obtained by die sinking EDM in an Inconel ®600 alloy using Cu-C electrodes. Currently, this material is of great interest for industrial applications in the nuclear, aeronautical and chemical sectors, due to their combinations of good mechanical properties, corrosion resistance and extreme hardness at very high temperatures. The experimental results confirm that the use of negative polarity leads to a higher material removal rate, higher electrode wear and higher surface roughness. Moreover, the optimal condition to obtain a maximum MRR (Material Removal Rate) of 30.49 mm3/min was: 8 A, 100 µs and 0.6, respectively, for the current intensity, pulse time and duty cycle.
  • PublicationOpen Access
    On the application of a design of experiments along with an anfis and a desirability function to model response variables
    (MDPI, 2021) Luis Pérez, Carmelo Javier; Ingeniería; Ingeniaritza
    In manufacturing engineering, it is common to use both symmetrical and asymmetrical factorial designs along with regression techniques to model technological response variables, since the in-advance prediction of their behavior is of great importance to determine the levels of variation that lead to optimal response values to be obtained. For this purpose, regression techniques based on the response surface method combined with a desirability function for multi-objective optimization are commonly employed, since it is usual to find manufacturing processes that require simultaneous optimization of several variables, which exhibit in many cases an opposite behavior. However, these regression models are sometimes not accurate enough to predict the behavior of these response variables, especially when they have significant non-linearities. To deal with this drawback, soft computing techniques are very effective in overcoming the limitations of conventional regression models. This present study is focused on the employment of a symmetrical design of experiments along with a new desirability function, which is proposed in this study, and with soft computing techniques based on fuzzy logic. It will be shown that more accurate results than those obtained from regression techniques are obtained. Moreover, this new desirability function is analyzed in this study.
  • PublicationOpen Access
    A study on the EDM drilling of reaction-bonded silicon carbide using different electrode materials
    (Springer, 2023) Torres Salcedo, Alexia; Luis Pérez, Carmelo Javier; Puertas Arbizu, Ignacio; Corres Sanz, Jesús María; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Today, there is a growing demand for efficient hole manufacturing technology in many industries such as aeronautics, automotive and nuclear, among others. Thus, the present study deals with the machining of through holes on SiSiC advanced ceramic by using Electrical Discharge Machining (EDM) drilling technology. Since recommendations related to the electrode characteristics and settings parameters are found to be scant for the industrial use of EDM drilling of SiSiC ceramics, this research work comes to cover this gap as it presents a complete study focused on the influence on different electrodes under rough and finish machining conditions. In particular, the influence of four electrodes materials (copper, copper-tungsten, graphite and copper infiltrated graphite) and three different electrode diameters ranging from 2 to 4 mm are investigated. In addition, the rotational speed of the electrode is also analysed. From the experimental results, both electrode material and machining regime, seem to be the most relevant factors of all. In the case of 2 mm diameter electrode, material removal rate (MRR) with Cu electrode was, approximately, 4.5 times higher than that obtained with a C electrode. In fact, it was found that copper electrode rotating at 20 rpm combined with high values of discharge energy (I = 2 A; ti = 70 µs) is the most economical option in terms of production cost and production time, as it gives a high MRR of 0.4754 mm3/min and a minimum electrode wear (EW) value of 7.52%. Moreover, slightly higher values of MRR were achieved for CuC electrode compared to those obtained with C electrode, indicating that the addition of Cu in the electrode contributes to a greater removal of material. However, a value of Ra of 0.37 µm could be obtained by setting low current intensity values (I = 0.5 A; ti = 45 µs) combined with C electrodes and with no rotation.
  • PublicationOpen Access
    Analysis on the manufacturing of an AA5083 straight blade previously ECAE processed
    (Hindawi, 2013) Salcedo Pérez, Daniel; Luis Pérez, Carmelo Javier; Puertas Arbizu, Ignacio; León Iriarte, Javier; Fuertes Bonel, Juan Pablo; Luri Irigoyen, Rodrigo; Ingeniería Mecánica, Energética y de Materiales; Mekanika, Energetika eta Materialen Ingeniaritza
    Over these past few years, there have been a large number of technical papers published related to the problem of improving the mechanical properties of materials obtained through severe plastic deformation. Nevertheless, the number of technical papers dealing with improvement in the mechanical properties of mechanical components manufactured from submicrometric grain size material has not been so proficient. Therefore, in this present research work, a straight blade has been manufactured starting from AA-5083 previously processed by ECAE twice (N2) with route C.This material will be manipulated so as to be isothermally forged at different temperature values.This present research work shows the results that are inherent in an improvement in themechanical properties and the microstructure achieved in the thus obtained components, compared with the starting material. In addition, the optimum forging temperature to achieve these components will be determined. As shown in this research work, it is possible to obtain submicrometric grain size mechanical components with a higher mechanical strength than those obtained in nonultrafine grained materials. The originality of this research work lies in the manufacturing of actual mechanical components from ECAE processed material and the analysis of their properties.