Ruiz ZamarreƱo, Carlos
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Ruiz ZamarreƱo
First Name
Carlos
person.page.departamento
IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
50 results
Search Results
Now showing 1 - 10 of 50
Publication Open Access Fiber-based label-free D-dimer detection for early diagnosis of venous thromboembolism(SPIE, 2020) Zubiate Orzanco, Pablo; Urrutia Azcona, Aitor; Ruiz ZamarreƱo, Carlos; FernĆ”ndez Irigoyen, JoaquĆn; Giannetti, Ambra; Baldini, Francesco; DĆaz Lucas, Silvia; MatĆas Maestro, Ignacio; Arregui San MartĆn, Francisco Javier; SantamarĆa MartĆnez, Enrique; Del Villar, Ignacio; Chiavaioli, Francesco; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de ComunicaciónD-dimer is a useful diagnostic biomarker for deep vein thrombosis or pulmonary embolism, collectively referred to as venous thromboembolism (VTE). The ability to detect in real-time the amount of D-dimer with a fast and reliable method is a key step to anticipate the appearance of these diseases. The combination of fiber-optic-based platforms for biosensing with the nanotechnologies is opening up the chance for the development of in situ, portable, lightweight, versatile, reliable and high-performance optical sensing devices towards lab-on-fiber technology. The generation of lossy mode resonances (LMRs) by means of the deposition of nm-thick absorbing metal-oxide films on special geometric-modified fibers allows measuring precisely and accurately surface refractive index changes, which are due to the binding interaction between a biological recognition element and the analyte under investigation. This approach enhances the light-matter interaction in a strong way, thus turning out to be more sensitive compared to other optical technology platforms, such as fiber gratings or surface plasmon resonance. Here, the results of a highly specific and sensitive biosensor for the detection of D-dimer based on LMR in fiber-optics are presented by monitoring in real-time the shift of the LMR related to the biomolecule interactions thanks to a conventional wavelength-interrogation system and an ad-hoc developed microfluidics. A detection limit of 100 ng/mL, a value 5-fold below the clinical cutoff value, has been attained for D-dimer spiked in human serum. The comparison of the results achieved with proteomics-based methodologies, which allows for the identification of betaand gamma-chains of fibrinogen, demonstrates the ability of our platform to specifically (>90%) recognize D-dimer.Publication Open Access Resonance-based optical gas sensors(IEEE, 2025-07-02) Gallego MartĆnez, Elieser Ernesto; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaGas sensors play a critical role in numerous human activities. Their necessity continues to grow across diverse fields as technological advancements drive demand for precision agriculture and bioengineering among other applications. Among existing sensor technologies, optical gas sensors stand out due to their ability to operate remotely in high-risk environments while remaining unaffected by electromagnetic interference. Resonance-based optical sensors offer targeted gas detection through the functionalization of their sensitive surfaces. This work focuses on reviewing the state of the art in resonance-based optical gas sensors (ROGSs), addressing their fundamental principles, recent advances in fabrication processes, waveguide designs, and materials employed both for resonance generation and as sensitive coatings. In addition, the review examines achieved sensitivity, emerging applications, and key developments in the field, including those efforts on improving ROGS performances by means of artificial intelligence techniques. The study encompasses optical sensors leveraging surface plasmon resonance, lossy mode resonance, and hyperbolic mode resonanceĀæthe latter representing a notable breakthrough in recent years as a particular case of Bloch surface waves.Publication Open Access Beyond near-infrared lossy mode resonances with fluoride glass optical fiber(Optica, 2021) Vitoria Pascual, Ignacio; Ruiz ZamarreƱo, Carlos; Ozcariz Celaya, Aritz; Imas GonzĆ”lez, JosĆ© Javier; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Universidad PĆŗblica de Navarra / Nafarroako Unibertsitate PublikoaThe objective of this Letter consists of the exploration of the lossy mode resonance (LMR) phenomenon beyond the nearinfrared region and specifically in the short wave infrared region (SWIR) and medium wave infrared region (MWIR). The experimental and theoretical results show for the first time, to the best of our knowledge, not only LMRs in these regions, but also the utilization of fluoride glass optical fiber associated with this phenomenon. The fabricated devices consist of a nanometric thin-film of titanium dioxide used as LMR generating material, which probed extraordinary sensitivities to external refractive index (RI) variations. RI sensitivity was studied in the SWIR and MWIR under different conditions, such as the LMR wavelength range or the order of resonance, showing a tremendous potential for the detection of minute concentrations of gaseous or biological compounds in different media.Publication Open Access Micro sized interdigital capacitor for humidity detection based on agarose coating(2021) Vitoria Pascual, Ignacio; Armas, Dayron; Coronel Camones, Carlos Manuel; Ozcariz Celaya, Aritz; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenA micro sized interdigital capacitor has been proposed for the detection of relative humidity. The photolithography technique enables the fabrication of fingers with a size of 10x500 um. A thin film of agarose functionalizes the sensor for humidity sensing, which improves its performance by 155 times, obtaining a sensitivity of 32.98 pF/%RH.Publication Open Access Twin lossy mode resonance on a single D-shaped optical fiber(Optica, 2021) Imas GonzĆ”lez, JosĆ© Javier; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; PĆ©rez Escudero, JosĆ© Manuel; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de ComunicaciónThis letter presents the fabrication of dual lossy mode resonance (LMR) refractometers based on titanium dioxide (TiO2) and tin oxide (SnO2) thin films deposited on a single side-polished D-shaped optical fiber. For the first time, to the best of our knowledge, two independent LMRs are obtained in the same D-shaped optical fiber, by using a step-shaped nanostructure consisting of a first section of TiO2 with a thickness of 120 nm and a second section with a thickness of 140 nm (120 nm of TiO2 and 20 nm of SnO2). Each section is responsible for generating a first-order LMR with TM-polarized light (LMRTM). TiO2 is deposited by atomic layer deposition and SnO2 by electron-beam deposition. The theoretical results show that the depth of each of the resonances of the dual LMR depends on the length of the corresponding section. Two experimental devices were fabricated with sections of different lengths, and their sensitivities were studied, achieving values ā¼ 4000 nm/refractive index unit (RIU) with a maximum of 4506 nm/RIU for values of the SRI between 1.3327 and 1.3485.Publication Open Access All-fiber ellipsometer for nanoscale dielectric coatings(Chinese Academy of Sciences, 2023) Imas GonzĆ”lez, JosĆ© Javier; MatĆas Maestro, Ignacio; Del Villar, Ignacio; Ozcariz Celaya, Aritz; Ruiz ZamarreƱo, Carlos; Albert, Jacques; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenMultiple mode resonance shifts in tilted fiber Bragg gratings (TFBGs) are used to simultaneously measure the thickness and the refractive index of TiO2 thin films formed by Atomic Layer Deposition (ALD) on optical fibers. This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses (T) and values of the real part of the refractive index (n). The minimization of an error function computed for each (n, T) pair then provides a solution for the thickness and refractive index of the deposited film and, a posteriori, to verify the deposition rate throughout the process from the time evolution of the wavelength shift data. Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself. The final values obtained by the TFBG (n = 2.25, final thickness of 185 nm) were both within 4% of the validation measurements. This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices, such as the optical fiber sensor field. Furthermore, the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates, such as ALD.Publication Open Access Optical fiber thermo-refractometer(Optica, 2022) Imas GonzĆ”lez, JosĆ© Javier; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; Cardozo da Silva, Jean Carlos; Oliveira, V.; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work presents the implementation of a thermo-refractometer, which integrates the measurement of both refractive index and temperature in a single optical fiber structure. To this purpose, a lossy mode resonance (LMR)-based refractometer is obtained by means of the deposition of a titanium dioxide (TiO2) thin film onto a side-polished (D-shaped) single mode fiber. Measurement and subsequent temperature compensation are achieved by means of a fiber Bragg grating (FBG) inscribed in the core of the D-shaped region. The LMR wavelength shift is monitored in transmission while the FBG (FBG peak at 1533 nm) displacement is observed in reflection. The LMR is sensitive to both the surrounding refractive index (SRI), with a sensitivity of 3725.2 nm/RIU in the 1.3324-1.3479 range, and the temperature (- 0.186 nm/°C); while the FBG is only affected by the temperature (32.6 pm/°C in the 25°C - 45°C range). With these values, it is possible to recover the SRI and temperature variations from the wavelength shifts of the LMR and the FBG, constituting a thermo-refractometer, where it is suppressed the effect of the temperature over the refractometer operation, which could cause errors in the fourth or even third decimal of the measured SRI value.Publication Open Access Optimization of fiber Bragg gratings inscribed in thin films deposited on D-shaped optical fibers(MDPI, 2021) Imas GonzĆ”lez, JosĆ© Javier; Ruiz ZamarreƱo, Carlos; Del Villar, Ignacio; MatĆas Maestro, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; IngenierĆa ElĆ©ctrica, Electrónica y de ComunicaciónA fiber Bragg grating patterned on a SnO2 thin film deposited on the flat surface of a D-shaped polished optical fiber is studied in this work. The fabrication parameters of this structure were optimized to achieve a trade-off among reflected power, full width half maximum (FWHM), sensitivity to the surrounding refractive index (SRI), and figure of merit (FOM). In the first place, the influence of the thin film thickness, the cladding thickness between the core and the flat surface of the D-shaped fiber (neck), and the length of the D-shaped zone over the reflected power and the FWHM were assessed. Reflected peak powers in the range from ā2 dB to ā10 dB can be easily achieved with FWHM below 100 pm. In the second place, the sensitivity to the SRI, the FWHM, and the FOM were analyzed for variations of the SRI in the 1.33ā1.4 range, the neck, and the thin-film thickness. The best sensitivities theoretically achieved for this device are next to 40 nm/RIU, while the best FOM has a value of 114 RIUā1.Publication Embargo Photoisomerization-induced LMR shift for UV radiation detection(Elsevier, 2024) Gallego MartĆnez, Elieser Ernesto; Ruiz ZamarreƱo, Carlos; MatĆas Maestro, Ignacio; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis work presents an optical sensor for ultraviolet radiation (UV) detection, based on the combined effects of Lossy Mode Resonance (LMR) in the mid infrared (MIR) spectral region and the photoisomerization of a polymeric dye coating. LMR was obtained by means of a sputtered SnO2 thin film on a tetrafluoroethylene-perfluoro (or alkoxy Vinyl Ether, PFA) substrate, along with a photo sensitive coating based on poly R-478. Obtained devices shown response and recovery times of 12 and 43 s, respectively, for an UV excitation of 71 mW at 365 nm. Sensitivity as a function of the excitation wavelength was studied with the highest value of 26 nm/mW obtained at 280 nm. For this excitation wavelength, the limit of detection (LoD) obtained was 0.024 mW. Four different excitation wavelengths were used to cover all UV regions (280, 310, 365 and 395 nm). All measurements were performed at room temperature and humidity (25 ĀæC ± 1 ĀæC and 13% R.H. ± 2% R.H. respectively). As far as we know, it is the first time that the LMR effect has been recognized in combination with a photoisomerization process.Publication Open Access Automated forearm prosthesis controlling using fiber bragg grating sensor(Sociedade Brasileira de Microondas e OptoeletrĆ“nica e Sociedade Brasileira de Eletromagnetismo, 2023) Valera Rialto JĆŗnior, PĆ©ricles; Dureck, Eduardo Henrique; Kalinowski, Alessandra; Ruiz ZamarreƱo, Carlos; Socorro LerĆ”noz, AbiĆ”n Bentor; Cardozo da Silva, Jean Carlos; Lazzaretti, AndrĆ© Eugenio; Dreyer, Uilian JosĆ©; IngenierĆa ElĆ©ctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenThis paper describes the automation of a forearm prosthesis using the signal collected by a Fiber Bragg Grating (FBG) sensor. The FBG sensor is applied to one subject's forearm to measure the deformation as a result of the index and middle fingers when moved individually. It is possible to control a one joint model prosthesis allied to a compliant hand mechanism through signal analyses. Each finger movement has its features, such as its amplitude, which opens the possibility of using those to control different parts of the prosthesis, joint rotation by the middle finger, and compliant hand movement by the index finger. This paper presents results regarding prosthesis assembling, Hypertext Transfer Protocol (HTTP) communication latency between prosthesis and computer and tests with pre-acquired and processed FBG signal data. The prosthesis wrist rotation movement is related to the middle finger signal, and its compliant mechanism actuation is due to index finger signal. The communication between prosthesis and the computer had a mean latency of 140 ms and a standard deviation of 18 ms. The results demonstrate the potential for using the sensor system and automated prosthesis in other applications involving real-time forearm sensing, multi-finger signal analysis, and prosthetic movement.