Publication:
Least upper bounds of the powers extracted and scattered by bi-anisotropic particles

Date

2014

Authors

Ra'di, Younes
Tretyakov, Sergei A.
Ziolkowski, Richard W.

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Métricas Alternativas

Abstract

The least upper bounds of the powers extracted and scattered by bi-anisotropic particles are investigated analytically. A rigorous derivation for particles having invertible polarizability tensors is presented, and the particles with singular polarizability tensors that have been reported in the literature are treated explicitly. The analysis concludes that previous upper bounds presented for isotropic particles can be extrapolated to bianisotropic particles. In particular, it is shown that neither nonreciprocal nor magnetoelectric coupling phenomena can further increase those upper bounds on the extracted and scattered powers. The outcomes are illustrated further with approximate circuit model examples of two dipole antennas connected via a generic lossless network.

Description

Keywords

Electromagnetic scattering, Bi-anisotropic media, Physical limitations, Circuit models

Department

Ingeniería Eléctrica y Electrónica / Ingeniaritza Elektrikoa eta Elektronikoa

Faculty/School

Degree

Doctorate program

item.page.cita

I. Liberal, Y. Ra'di, R. Gonzalo, I. Ederra, S. A. Tretyakov and R. W. Ziolkowski, "Least Upper Bounds of the Powers Extracted and Scattered by Bi-anisotropic Particles," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 9, pp. 4726-4735, Sept. 2014. doi: 10.1109/TAP.2014.2330620.

item.page.rights

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.