A combined fractional step domain decomposition method for the numerical integration of parabolic problems

dc.contributor.authorPortero Egea, Laura
dc.contributor.authorBujanda Cirauqui, Blanca
dc.contributor.authorJorge Ulecia, Juan Carlos
dc.contributor.departmentIngeniería Matemática e Informáticaes_ES
dc.contributor.departmentMatematika eta Informatika Ingeniaritzaeu
dc.date.accessioned2023-09-08T08:00:02Z
dc.date.available2023-09-08T08:00:02Z
dc.date.issued2004
dc.date.updated2023-09-08T07:46:16Z
dc.description.abstractIn this paper we develop parallel numerical algorithms to solve linear time dependent coefficient parabolic problems. Such methods are obtained by means of two consecutive discretization procedures. Firstly, we realize a time integration of the original problem using a Fractional Step Runge Kutta method which provides a family of elliptic boundary value problems on certain subdomains of the original domain. Next, we discretize those elliptic problems by means of standard techniques. Using this framework, the numerical solution is obtained by solving, at each stage, a set of uncoupled linear systems of low dimension. Comparing these algorithms with the classical domain decomposition methods for parabolic problems, we obtain a reduction of computational cost because of, in this case, no Schwarz iterations are required. We give an unconditional convergence result for the totally discrete scheme and we include two numerical examples that show the behaviour of the proposed method.en
dc.description.sponsorshipThis research is partially supported by the MCYT research project num. BFM2000-0803 and the research project resolution 134/2002 of Government of Navarra.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationPortero, L., Bujanda, B., & Jorge, J. C. (2004). A combined fractional step domain decomposition method for the numerical integration of parabolic problems. En R. Wyrzykowski, J. Dongarra, M. Paprzycki, & J. Waśniewski (Eds.), Parallel Processing and Applied Mathematics (Vol. 3019, pp. 1034-1041). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_134en
dc.identifier.doi10.1007/978-3-540-24669-5_134
dc.identifier.isbn978-3-540-21946-0
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46253
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofWyrzykowski, R.; Dongarra, J.; Paprzycki, M.; Wasniewski, J. (Eds.). Parallel processing and applied mathematics: 5th international conference, PPAM 2003: revised papers. Berlín: Springer; 2004. p.1034-1041 978-3-540-21946-0en
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//134%2F2002/
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-540-24669-5_134
dc.rights© Springer-Verlag Berlin Heidelberg 2004en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectParabolic problemasen
dc.subjectNumerical integrationen
dc.titleA combined fractional step domain decomposition method for the numerical integration of parabolic problemsen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication880f9145-4259-4d01-95ec-5fc15ea7c71a
relation.isAuthorOfPublication5ae28769-9c29-4de1-8a69-39593178c8cb
relation.isAuthorOfPublication057cf9b6-54a9-4331-ade0-71ca16d5b57b
relation.isAuthorOfPublication.latestForDiscovery880f9145-4259-4d01-95ec-5fc15ea7c71a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Portero_CombinedFractional.pdf
Size:
301.65 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: