Publication:
Preparation of selenium-based drug-modified polymeric ligand-functionalised Fe3O4 nanoparticles as multimodal drug carrier and magnetic hyperthermia inductor

Consultable a partir de

Date

2023

Authors

Etxebeste-Mitxeltorena, Mikel
Moreno, Esther
Plano, Daniel
Sanmartín, Carmen
Megahed, Saad
Feliu, Neus
Parak, Wolfgang J.
Gil de Muro, Izaskun

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106845RB-I00/ES/

Abstract

In recent years, much effort has been invested into developing multifunctional drug delivery systems to overcome the drawbacks of conventional carriers. Magnetic nanoparticles are not generally used as carriers but can be functionalised with several different biomolecules and their size can be tailored to present a hyperthermia response, allowing for the design of multifunctional systems which can be active in therapies. In this work, we have designed a drug carrier nanosystem based on Fe3O4 nanoparticles with large heating power and 4-amino-2-pentylselenoquinazoline as an attached drug that exhibits oxidative properties and high selectivity against a variety of cancer malignant cells. For this propose, two samples composed of homogeneous Fe3O4 nanoparticles (NPs) with different sizes, shapes, and magnetic properties have been synthesised and characterised. The surface modification of the prepared Fe3O4 nanoparticles has been developed using copolymers composed of poly(ethylene-alt-maleic anhydride), dodecylamine, polyethylene glycol and the drug 4-amino-2-pentylselenoquinazoline. The obtained nanosystems were properly characterised. Their in vitro efficacy in colon cancer cells and as magnetic hyperthermia inductors was analysed, thereby leaving the door open for their potential application as multimodal agents.

Keywords

Drug carriers, Magnetic hyperthermia inductor, Magnetic nanoparticles

Department

Ciencias / Zientziak / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was supported by institutional funding from the Ministry of Economy and Competitiveness and Basque Government under projects PID2019-106845RB-100 (AEI/FEDER, UE) and GIC-IT-1546-22. WJP was supported by the Cluster of Excellence Advanced Imaging of Matter of the Deursche Forschungsgemeinschaft (DFG)-EXC 2056—project ID 390715994. SM was financed by a PhD fellowship from the German Academic Exchange Service (DAAD). NF was supported by Fraunhofer Attract.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.