Why using topological and analytical methods in aggregation of fuzzy preferences?
Date
Director
Publisher
Project identifier
Abstract
The Arrow’s Impossibility Theorem states that there is no function fusing individual preferences into a social one satisfying certain properties of 'common sense'. On the contrary, in some of the fuzzy extensions of the Arrovian model, possibility arises. We have developed a technique which has been able to prove new impossibility results in the fuzzy approach. In this poster, we will explain the fundaments of this technique and in which models we can apply it. This technique, is based on controlling the aggregation of fuzzy preferences through some aggregation functions of dichotomic preferences. For each fuzzy aggregation function, we get a family of dichotomic aggregation functions. Studying this family, we obtain information about the initial aggregation function. We will discuss why the fuzzy Arrovian models in which we can apply this technique are, in some sense, less fuzzy. Moreover, we will expose why we should use topological and analytical methods in the fuzzy models out of the scope of our technique.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
Collections
Comunicaciones y ponencias de congresos - Biltzarrak eta Argitalpenak
Comunicaciones y ponencias de congresos INAMAT2 - INAMAT2 biltzarretako komunikazioak eta txostenak
Comunicaciones y ponencias de congresos INARBE - INARBE biltzarretako komunikazioak eta txostenak
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.