Publication:
On admissible orders over closed subintervals of [0,1]

Consultable a partir de

2022-02-26

Date

2020

Authors

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

ES/1PE/TIN2016-77356-P
ES/1PE/TIN2016-81731

Abstract

In this paper, we make some considerations about admissible orders on the set of closed subintervals of the unit interval I[0,1], i.e. linear orders that refine the product order on intervals. We propose a new way to generate admissible orders on I[0,1] which is more general than those we find in the current literature. Also, we deal with the possibility of an admissible order on I[0,1] to be isomorphic to the usual order on [0,1]. We prove that some orders constructed by our method are not isomorphic to the usual one and we make some considerations about the following question: is there some admissible order on I[0,1] isomorphic to the usual order on [0,1]?

Keywords

Interval-valued fuzzy sets, Order isomorphism, Admissible order, Cantor’s bijection

Department

Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was partially supported by the Brazilian funding agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), under Proc. No. 307781/2016-0 , and by research projects TIN2016-77356-P (AEI/FEDER,UE) and TIN2016-81731-REDT (AEI/FEDER,UE) of the Spanish Government.

© 2020 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.