Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals

dc.contributor.authorFerreira González, Chelo
dc.contributor.authorLópez García, José Luis
dc.contributor.authorPérez Sinusía, Ester
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2023-03-27T07:11:32Z
dc.date.available2023-03-27T07:11:32Z
dc.date.issued2023
dc.date.updated2023-03-27T06:49:10Z
dc.description.abstractWe consider the highly oscillatory integral 𝐹(𝑤) ∶= ∫ ∞ −∞ 𝑒𝑖𝑤(𝑡𝐾+2+𝑒𝑖𝜃𝑡𝑝) 𝑔(𝑡)𝑑𝑡 for large positive values of 𝑤, −𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers with 1 ≤ 𝑝 ≤ 𝐾, and 𝑔(𝑡) an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by López et al. We derive an asymptotic approximation of this integral when 𝑤 → +∞ for general values of 𝐾 and 𝑝 in terms of elementary functions, and determine the Stokes lines. For 𝑝 ≠ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters 𝐾 and 𝑝; the special case 𝑝=1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals Ψ𝐾(𝑥1, 𝑥2,…,𝑥𝐾) for large values of one of its variables, say 𝑥𝑝, and bounded values of the remaining ones. This family of integrals may be written in the form 𝐹(𝑤) for appropriate values of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large |𝑥𝑝|. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.en
dc.description.sponsorshipThis research was supported by the Universidad Pública de Navarra, research grant PRO-UPNA (6158) 01/01/2022.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationFerreira, C., López, J. L., Pérez Sinusía, E. (2023) Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals. Studies in Applied Mathematics, 150(1), 254-276. https://doi.org/10.1111/sapm.12539.en
dc.identifier.doi10.1111/sapm.12539
dc.identifier.issn0022-2526
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/44937
dc.language.isoengen
dc.publisherWileyen
dc.relation.ispartofStudies in Applied Mathematics, 150(1), 254-276en
dc.relation.publisherversionhttps://doi.org/10.1111/sapm.12539
dc.rights© 2022 The Authors. Creative Commons Attribution 4.0 International (CC BY 4.0)en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAsymptotic expansionsen
dc.subjectCatastrophe integralsen
dc.subjectHighly oscillatory integralsen
dc.subjectModified saddle point methoden
dc.titleAsymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integralsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication8b28fd50-66f4-431e-a219-43d8c02bb077
relation.isAuthorOfPublicatione6cd33c5-6d5e-455c-b8da-32a9702e16c8
relation.isAuthorOfPublication93f891c7-529d-4972-8759-9d943c60949c
relation.isAuthorOfPublication.latestForDiscovery8b28fd50-66f4-431e-a219-43d8c02bb077

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ferreira_AsymptoticApproximation.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: