Publication: Series representations of the Volterra function and the Fransén–Robinson constant
dc.contributor.author | López García, José Luis | |
dc.contributor.author | Pagola Martínez, Pedro Jesús | |
dc.contributor.author | Palacios Herrero, Pablo | |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute for Advanced Materials and Mathematics - INAMAT2 | en |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.funder | Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa | es |
dc.date.accessioned | 2022-01-21T09:16:26Z | |
dc.date.available | 2023-12-01T00:00:13Z | |
dc.date.issued | 2021 | |
dc.description.abstract | The Volterra function μ(t,β,α) was introduced by Vito Volterra in 1916 as the solution to certain integral equations with a logarithmic kernel. Despite the large number of applications of the Volterra function, the only known analytic representations of this function are given in terms of integrals. In this paper we derive several convergent expansion of μ(t,β,α) in terms of incomplete gamma functions. These expansions may be used to implement numerical evaluation techniques for this function. As a particular application, we derive a numerical series representation of the Fransén–Robinson constant F := µ(1, 1, 0) = R ∞ 0 1 Γ(x) dx. Some numerical examples illustrate the accuracy of the approximations | en |
dc.description.sponsorship | This research was supported by the Ministerio de Economía y Competitividad (MTM2017-83490-P) and the Universidad Pública de Navarra, Spain. | en |
dc.embargo.lift | 2023-12-01 | |
dc.embargo.terms | 2023-12-01 | |
dc.format.extent | 14 p. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | 10.1016/j.jat.2021.105641 | |
dc.identifier.issn | 0021-9045 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/41872 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.relation.ispartof | Journal of Approximation Theory, 272 (2021) 105641 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/ | en |
dc.relation.publisherversion | https://doi.org/10.1016/j.jat.2021.105641 | |
dc.rights | © 2021 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en |
dc.rights.accessRights | Acceso abierto / Sarbide irekia | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Convergent series representation | en |
dc.subject | Fransén-Robinson constant | en |
dc.subject | Special functions | en |
dc.subject | Volterra function | en |
dc.title | Series representations of the Volterra function and the Fransén–Robinson constant | en |
dc.type | info:eu-repo/semantics/article | en |
dc.type | Artículo / Artikulua | es |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |
dc.type.version | Versión aceptada / Onetsi den bertsioa | es |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e6cd33c5-6d5e-455c-b8da-32a9702e16c8 | |
relation.isAuthorOfPublication | 68ff8840-f80e-4119-ac1a-edfad578de07 | |
relation.isAuthorOfPublication | 8793d0db-cf29-4d69-96be-387a3677fc64 | |
relation.isAuthorOfPublication.latestForDiscovery | e6cd33c5-6d5e-455c-b8da-32a9702e16c8 |