Series representations of the Volterra function and the Fransén–Robinson constant

Date

2021

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

The Volterra function μ(t,β,α) was introduced by Vito Volterra in 1916 as the solution to certain integral equations with a logarithmic kernel. Despite the large number of applications of the Volterra function, the only known analytic representations of this function are given in terms of integrals. In this paper we derive several convergent expansion of μ(t,β,α) in terms of incomplete gamma functions. These expansions may be used to implement numerical evaluation techniques for this function. As a particular application, we derive a numerical series representation of the Fransén–Robinson constant F := µ(1, 1, 0) = R ∞ 0 1 Γ(x) dx. Some numerical examples illustrate the accuracy of the approximations

Description

Keywords

Convergent series representation, Fransén-Robinson constant, Special functions, Volterra function

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.