Construction methods of fuzzy implications on bounded posets

Consultable a partir de

2026-01-01

Date

2024

Director

Publisher

Elsevier
Acceso embargado / Sarbidea bahitua dago
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/ recolecta
Impacto

Abstract

The fuzzy implication on bounded lattices was introduced by Palmeira et al., and the method of extending fuzzy implications on bounded lattices by using retraction was provided. However, we find that the extension of fuzzy implications on bounded lattices can also be realized through homomorphism. In order to get better results, we will continue to study this topic in this paper. In particular, we will focus on the construction methods of fuzzy implications on bounded posets. More precisely, we will give some construction methods of fuzzy implications via 0,1-homomorphism on bounded posets. Then we further study two special kinds of fuzzy implications, (Q,N)-implications and RQ-implications on bounded posets, where Q is a quasi-overlap function. Finally, we discuss the distributive laws and the importation laws of (Q,N)-implications and RQ-implications over a quasi-overlap function Q.

Description

Keywords

0,1-homomorphism, Fuzzy implication, Law of distributive, Law of importation, Quasi-overlap function

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Wang, M., Zhang, X., Bustince, H., Fernandez, J. (2024) Construction methods of fuzzy implications on bounded posets. International Journal of Approximate Reasoning, 164, 1-19. https://doi.org/10.1016/j.ijar.2023.109064.

item.page.rights

© 2023 Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.