Lipschitz free spaces isomorphic to their infinite sums and geometric applications

Date

2021

Authors

Ansorena, José L.
Cúth, Marek
Doucha, Michal

Director

Publisher

American Mathematical Society
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ recolecta
Impacto

Abstract

We find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct _1-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and spheres of the same finite dimensions are isomorphic, that the Lipschitz-free space over Zd is isomorphic to its _1-sum, or that the Lipschitz-free space over any snowflake of a doubling metric space is isomorphic to l1. Moreover, following new ideas of Bruè et al. from [J. Funct. Anal. 280 (2021), pp. 108868, 21] we provide an elementary self-contained proof that Lipschitz-free spaces over doubling metric spaces are complemented in Lipschitz-free spaces over their superspaces and they have BAP. Everything, including the results about doubling metric spaces, is explored in the more comprehensive setting of p-Banach spaces, which allows us to appreciate the similarities and differences of the theory between the cases p < 1 and p = 1.

Description

Keywords

Arens-Eells space, Lipschitz free p-space, Lipschitz free space, Quasi-Banach space, Transportation cost space

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 American Mathematical Society. Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.