Lipschitz free spaces isomorphic to their infinite sums and geometric applications

dc.contributor.authorAlbiac Alesanco, Fernando José
dc.contributor.authorAnsorena, José L.
dc.contributor.authorCúth, Marek
dc.contributor.authorDoucha, Michal
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.date.accessioned2022-01-24T11:40:05Z
dc.date.available2022-01-24T11:40:05Z
dc.date.issued2021
dc.description.abstractWe find general conditions under which Lipschitz-free spaces over metric spaces are isomorphic to their infinite direct _1-sum and exhibit several applications. As examples of such applications we have that Lipschitz-free spaces over balls and spheres of the same finite dimensions are isomorphic, that the Lipschitz-free space over Zd is isomorphic to its _1-sum, or that the Lipschitz-free space over any snowflake of a doubling metric space is isomorphic to l1. Moreover, following new ideas of Bruè et al. from [J. Funct. Anal. 280 (2021), pp. 108868, 21] we provide an elementary self-contained proof that Lipschitz-free spaces over doubling metric spaces are complemented in Lipschitz-free spaces over their superspaces and they have BAP. Everything, including the results about doubling metric spaces, is explored in the more comprehensive setting of p-Banach spaces, which allows us to appreciate the similarities and differences of the theory between the cases p < 1 and p = 1.en
dc.description.sponsorshipThe first author acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces and the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018-095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación. The second author acknowledges the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018-095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación. The third author was supported by Charles University Research program No. UNCE/SCI/023. The fourth author was supported by the GACˇR project 19-05271Y and RVO: 67985840.en
dc.format.extent40 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1090/tran/8444
dc.identifier.issn0002-9947
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41919
dc.language.isoengen
dc.publisherAmerican Mathematical Society
dc.relation.ispartofTransactions of the American Mathematical Society, 374 (10), 7281-7312
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1090/tran/8444
dc.rights© 2021 American Mathematical Society. Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacionalen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArens-Eells spaceen
dc.subjectLipschitz free p-spaceen
dc.subjectLipschitz free spaceen
dc.subjectQuasi-Banach spaceen
dc.subjectTransportation cost spaceen
dc.titleLipschitz free spaces isomorphic to their infinite sums and geometric applicationsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3a702006-6ba1-41ba-93bf-ea9fee1de239
relation.isAuthorOfPublication.latestForDiscovery3a702006-6ba1-41ba-93bf-ea9fee1de239

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Albiac_LipschitzFree.pdf
Size:
432 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: