Managing forests for both downstream and downwind water

Date

2019

Authors

Creed, Irena F.
Jones, Julia A.
Archer, Emma
Claassen, Marius

Director

Publisher

Frontiers Media
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto
No disponible en Scopus

Abstract

Forests and trees are key to solving water availability problems in the face of climate change and to achieving the United Nations Sustainable Development Goals. A recent global assessment of forest and water science posed the question: How do forests matter for water? Here we synthesize science from that assessment, which shows that forests and water are an integrated system. We assert that forests, from the tops of their canopies to the base of the soils in which trees are rooted, must be considered a key component in the complex temporal and spatial dimensions of the hydrologic cycle. While it is clear that forests influence both downstream and downwind water availability, their actual impact depends on where they are located and their processes affected by natural and anthropogenic conditions. A holistic approach is needed to manage the connections between forests, water and people in the face of current governance systems that often ignore these connections. We need policy interventions that will lead to forestation strategies that decrease the dangerous rate of loss in forest cover and that-where appropriate-increase the gain in forest cover. We need collective interventions that will integrate transboundary forest and water management to ensure sustainability of water supplies at local, national and continental scales. The United Nations should continue to show leadership by providing forums in which interventions can be discussed, negotiated and monitored, and national governments must collaborate to sustainably manage forests to ensure secure water supplies and equitable and sustainable outcomes.

Description

Keywords

Climate change, Hydrologic cycle, Forest, Water, Policy, Mitigation, Adaptation, Sustainability

Department

Ciencias / Zientziak

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2019 Creed, Jones, Archer, Claassen, Ellison, McNulty, van Noordwijk, Vira, Wei, Bishop, Blanco, Gush, Gyawali, Jobbágy, Lara, Little, Martin-Ortega, Mukherji, Murdiyarso, Pol, Sullivan and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.