Publication:
Convergent and asymptotic methods for second-order difference equations with a large parameter

Consultable a partir de

2019-11-08

Date

2018

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

MINECO//MTM2014-52859-P/ES/

Abstract

We consider the second-order linear difference equation y(n+2)−2ay(n+1)−Λ2y(n)=g(n)y(n)+f(n)y(n+1) , where Λ is a large complex parameter, a≥0 and g and f are sequences of complex numbers. Two methods are proposed to find the asymptotic behavior for large |Λ|of the solutions of this equation: (i) an iterative method based on a fixed point method and (ii) a discrete version of Olver’s method for second-order linear differential equations. Both methods provide an asymptotic expansion of every solution of this equation. The expansion given by the first method is also convergent and may be applied to nonlinear problems. Bounds for the remainders are also given. We illustrate the accuracy of both methods for the modified Bessel functions and the associated Legendre functions of the first kind.

Keywords

Second-order difference equations, Asymptotic expansions, Green’s functions, Olver’s method

Department

Matematika eta Informatika Ingeniaritza / Institute for Advanced Materials and Mathematics - INAMAT2 / Ingeniería Matemática e Informática

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This research was supported by the Spanish Ministry of Economía y Competitividad, project MTM2014-52859-P. The Universidad Pública de Navarra is acknowledged by its financial support.

© Springer Nature Switzerland AG 2018

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.