Publication:
Enhancing the efficiency of the interval-valued fuzzy rule-based classifier with tuning and rule selection

dc.contributor.authorSanz Delgado, José Antonio
dc.contributor.authorDa Cruz Asmus, Tiago
dc.contributor.authorOsa Hernández, Borja de la
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA1926es
dc.date.accessioned2021-04-15T07:59:07Z
dc.date.available2021-06-05T23:00:11Z
dc.date.issued2020
dc.descriptionTrabajo presentado a la 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020 (15-19 de junio de 2020)es_ES
dc.description.abstractInterval-Valued fuzzy rule-based classifier with TUning and Rule Selection, IVTURS, is a state-of-the-art fuzzy classifier. One of the key point of this method is the usage of interval-valued restricted equivalence functions because their parametrization allows one to tune them to each problem, which leads to obtaining accurate results. However, they require the application of the exponentiation several times to obtain a result, which is a time demanding operation implying an extra charge to the computational burden of the method. In this contribution, we propose to reduce the number of exponentiation operations executed by the system, so that the efficiency of the method is enhanced with no alteration of the obtained results. Moreover, the new approach also allows for a reduction on the search space of the evolutionary method carried out in IVTURS. Consequently, we also propose four different approaches to take advantage of this reduction on the search space to study if it can imply an enhancement of the accuracy of the classifier. The experimental results prove: 1) the enhancement of the efficiency of IVTURS and 2) the accuracy of IVTURS is competitive versus that of the approaches using the reduced search space.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Science and Technology (project TIN2016-77356-P (AEI/FEDER, UE)) and the Public University of Navarre under the project PJUPNA1926.en
dc.embargo.lift2021-06-05
dc.embargo.terms2021-06-05
dc.format.extent14 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/978-3-030-50153-2_35
dc.identifier.isbn978-3-030-50153-2 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39550
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofLesot MJ. et al. (eds) Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2020. Communications in Computer and Information Science, vol 1239. Springer, Cham, p. 463-478. ISBN: 978-3-030-50153-2en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-Pen
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-030-50153-2_35
dc.rights© Springer Nature Switzerland AG 2020en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectInterval-valued fuzzy rule-based classification systemsen
dc.subjectInterval-valued fuzzy setsen
dc.subjectInterval type-2 fuzzy setsen
dc.subjectEvolutionary fuzzy systemsen
dc.titleEnhancing the efficiency of the interval-valued fuzzy rule-based classifier with tuning and rule selectionen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublication04db2b7d-89dc-4815-be4a-4b201cdce99b
relation.isAuthorOfPublication64b6af0b-c005-4e1d-9eef-83f80e2ec8a4
relation.isAuthorOfPublication44a1efc3-41b2-4fcb-9f12-699b6926bcf2
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery04db2b7d-89dc-4815-be4a-4b201cdce99b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020100263_Sanz_EnhancingEfficiency.pdf
Size:
300.93 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: