Publication:
Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways

Date

2018

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

MINECO//SAF2012-31166/ES/recolecta
MINECO//SAF2015-66520-R/ES/recolecta
MINECO//DPI2015-64221-C2-1-R/ES/recolecta

Abstract

Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.

Description

Keywords

Bacterial pathogenesis, Infection

Department

IdAB. Instituto de Agrobiotecnología / Agrobioteknologiako Institutua

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© The Author(s) 2018. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.