Publication: On a particular class of Meijer's G functions appearing in fractional calculus
Date
Authors
Director
Publisher
Impacto
Abstract
In this paper we investigate the Meijer G-function G p+1,p+1 p,1 which, for certain parameter values, represents the Riemann-Liouville fractional integral of the Meijer-Nørlund function G p,p. p,0 The properties of this function play an important role in extending the multiple Erdélyi-Kober fractional integral operator to arbitrary values of the parameters which is investigated in a separate work, in Fract. Calc. Appl. Anal., Vol. 21, No 5 (2018). Our results for G p+1,p+1 p,1 include: a regularization formula for overlapping poles, a connection formula with the Meijer-Nørlund function, asymptotic formulas around the origin and unity, formulas for the moments, a hypergeometric transform and a sign stabilization theorem for growing parameters.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2018 Academic Publications
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.