Publication:
On a particular class of Meijer's G functions appearing in fractional calculus

Date

2018

Authors

Director

Publisher

Academic Publications
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/recolecta
Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

In this paper we investigate the Meijer G-function G p+1,p+1 p,1 which, for certain parameter values, represents the Riemann-Liouville fractional integral of the Meijer-Nørlund function G p,p. p,0 The properties of this function play an important role in extending the multiple Erdélyi-Kober fractional integral operator to arbitrary values of the parameters which is investigated in a separate work, in Fract. Calc. Appl. Anal., Vol. 21, No 5 (2018). Our results for G p+1,p+1 p,1 include: a regularization formula for overlapping poles, a connection formula with the Meijer-Nørlund function, asymptotic formulas around the origin and unity, formulas for the moments, a hypergeometric transform and a sign stabilization theorem for growing parameters.

Description

Keywords

Fractional calculus operators, Generalized hypergeometric function, Integral representation, Meijer's G-function

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2018 Academic Publications

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.