New analytic representations of the hypergeometric functions p+1Fp

dc.contributor.authorLópez García, José Luis
dc.contributor.authorPalacios Herrero, Pablo
dc.contributor.authorPagola Martínez, Pedro Jesús
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.date.accessioned2021-09-06T12:27:36Z
dc.date.available2021-11-12T00:00:14Z
dc.date.issued2021
dc.description.abstractThe power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge either inside the unit disk |z|<1 or outside this disk |z|>1. Nørlund’s expansion in powers of z/(z−1) converges in the half-plane R(z)<1/2. For arbitrary z0∈C, Bühring’s expansion in inverse powers of z−z0 converges outside the disk |z−z0|= max{|z0|,|z0−1|}. None of them converge on the whole indented closed unit disk |z|≤1,z≠1. In this paper, we derive new expansions in terms of rational functions of z that converge in different regions, bounded or unbounded, of the complex plane that contain the indented closed unit disk. We give either explicit formulas for the coefficients of the expansions or recurrence relations. The key point of the analysis is the use of multi-point Taylor expansions in appropriate integral representations of p+1Fp(a,b1,…,bp;c1,…,cp;z). We show the accuracy of the approximations by means of several numerical experiments.en
dc.embargo.lift2021-11-12
dc.embargo.terms2021-11-12
dc.format.extent21 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/s00365-021-09537-2
dc.identifier.issn1432-0940
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/40438
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofConstructive Approximation (2021)en
dc.relation.publisherversionhttps://doi.org/10.1007/s00365-021-09537-2
dc.rights© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectGeneralized hypergeometric functionsen
dc.subjectApproximation by rational functionsen
dc.subjectTwo and three-point Taylor expansionsen
dc.titleNew analytic representations of the hypergeometric functions p+1Fpen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione6cd33c5-6d5e-455c-b8da-32a9702e16c8
relation.isAuthorOfPublication8793d0db-cf29-4d69-96be-387a3677fc64
relation.isAuthorOfPublication68ff8840-f80e-4119-ac1a-edfad578de07
relation.isAuthorOfPublication.latestForDiscoverye6cd33c5-6d5e-455c-b8da-32a9702e16c8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lopez_NewAnalytic.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: