Publication:
New analytic representations of the hypergeometric functions p+1Fp

Date

2021

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Métricas Alternativas

Abstract

The power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge either inside the unit disk |z|<1 or outside this disk |z|>1. Nørlund’s expansion in powers of z/(z−1) converges in the half-plane R(z)<1/2. For arbitrary z0∈C, Bühring’s expansion in inverse powers of z−z0 converges outside the disk |z−z0|= max{|z0|,|z0−1|}. None of them converge on the whole indented closed unit disk |z|≤1,z≠1. In this paper, we derive new expansions in terms of rational functions of z that converge in different regions, bounded or unbounded, of the complex plane that contain the indented closed unit disk. We give either explicit formulas for the coefficients of the expansions or recurrence relations. The key point of the analysis is the use of multi-point Taylor expansions in appropriate integral representations of p+1Fp(a,b1,…,bp;c1,…,cp;z). We show the accuracy of the approximations by means of several numerical experiments.

Description

Keywords

Generalized hypergeometric functions, Approximation by rational functions, Two and three-point Taylor expansions

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.