Publication:
Metrics for dataset demographic bias: a case study on facial expression recognition

Date

2024

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118014RB-I00/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/recolecta
Gobierno de Navarra//0011-1411-2020-000079
Impacto

Abstract

Demographic biases in source datasets have been shown as one of the causes of unfairness and discrimination in the predictions of Machine Learning models. One of the most prominent types of demographic bias are statistical imbalances in the representation of demographic groups in the datasets. In this paper, we study the measurement of these biases by reviewing the existing metrics, including those that can be borrowed from other disciplines. We develop a taxonomy for the classification of these metrics, providing a practical guide for the selection of appropriate metrics. To illustrate the utility of our framework, and to further understand the practical characteristics of the metrics, we conduct a case study of 20 datasets used in Facial Emotion Recognition (FER), analyzing the biases present in them. Our experimental results show that many metrics are redundant and that a reduced subset of metrics may be sufficient to measure the amount of demographic bias. The paper provides valuable insights for researchers in AI and related fields to mitigate dataset bias and improve the fairness and accuracy of AI models.

Description

Keywords

AI fairness, Artificial intelligence, Deep learning, Demographic bias, Facial expression recognition

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Dominguez-Catena, I., Paternain, D., Galar, M. (2024) Metrics for dataset demographic bias: a case study on facial expression recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-18. https://doi.org/10.1109/TPAMI.2024.3361979.

item.page.rights

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.