Metrics for dataset demographic bias: a case study on facial expression recognition

dc.contributor.authorDomínguez Catena, Iris
dc.contributor.authorPaternain Dallo, Daniel
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra - Nafarroako Unibertsitate Publikoa
dc.date.accessioned2024-09-30T17:45:06Z
dc.date.available2024-09-30T17:45:06Z
dc.date.issued2024
dc.date.updated2024-09-30T17:02:21Z
dc.description.abstractDemographic biases in source datasets have been shown as one of the causes of unfairness and discrimination in the predictions of Machine Learning models. One of the most prominent types of demographic bias are statistical imbalances in the representation of demographic groups in the datasets. In this paper, we study the measurement of these biases by reviewing the existing metrics, including those that can be borrowed from other disciplines. We develop a taxonomy for the classification of these metrics, providing a practical guide for the selection of appropriate metrics. To illustrate the utility of our framework, and to further understand the practical characteristics of the metrics, we conduct a case study of 20 datasets used in Facial Emotion Recognition (FER), analyzing the biases present in them. Our experimental results show that many metrics are redundant and that a reduced subset of metrics may be sufficient to measure the amount of demographic bias. The paper provides valuable insights for researchers in AI and related fields to mitigate dataset bias and improve the fairness and accuracy of AI models.en
dc.description.sponsorshipThis work was supported in part by a predoctoral fellowship from the Research Service of the Universidad Pública de Navarra through open access funding, in part by the Spanish MICIN under Grants PID2019-108392GB-I00, PID2020-118014RB-I00, and PID2022-136627NB-I00/AEI/10.13039/501100011033 FEDER, UE, and in part by the Government of Navarre under Grant 0011-1411-2020-000079 - Emotional Films.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationDominguez-Catena, I., Paternain, D., Galar, M. (2024) Metrics for dataset demographic bias: a case study on facial expression recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-18. https://doi.org/10.1109/TPAMI.2024.3361979.
dc.identifier.doi10.1109/TPAMI.2024.3361979
dc.identifier.issn0162-8828
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/51887
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofIEEE Transactions on Pattern Analysis and Machine Intelligence 46(8), 2024, 5209 - 5226
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118014RB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-136627NB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//0011-1411-2020-000079/
dc.relation.publisherversionhttps://doi.org/10.1109/TPAMI.2024.3361979
dc.rights© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectAI fairnessen
dc.subjectArtificial intelligenceen
dc.subjectDeep learningen
dc.subjectDemographic biasen
dc.subjectFacial expression recognitionen
dc.titleMetrics for dataset demographic bias: a case study on facial expression recognitionen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication2ba22a83-13df-4d11-8e44-f9e97dbc13d0
relation.isAuthorOfPublicationca16c024-51e4-4f8f-b457-dc5307be32d9
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscovery2ba22a83-13df-4d11-8e44-f9e97dbc13d0

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Dominguez_Metrics.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Dominguez_Metrics_MatCompl.pdf
Size:
984.88 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: