Accurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networks

dc.contributor.authorLarumbe Bergera, Andoni
dc.contributor.authorGarde Lecumberri, Gonzalo
dc.contributor.authorPorta Cuéllar, Sonia
dc.contributor.authorCabeza Laguna, Rafael
dc.contributor.authorVillanueva Larre, Arantxa
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2021-12-09T12:25:17Z
dc.date.available2021-12-09T12:25:17Z
dc.date.issued2021
dc.description.abstractRemote eye tracking technology has suffered an increasing growth in recent years due to its applicability in many research areas. In this paper, a video-oculography method based on convolutional neural networks (CNNs) for pupil center detection over webcam images is proposed. As the first contribution of this work and in order to train the model, a pupil center manual labeling procedure of a facial landmark dataset has been performed. The model has been tested over both real and synthetic databases and outperforms state-of-the-art methods, achieving pupil center estimation errors below the size of a constricted pupil in more than 95% of the images, while reducing computing time by a 8 factor. Results show the importance of use high quality training data and well-known architectures to achieve an outstanding performance.en
dc.description.sponsorshipThis research was funded by Public University of Navarra (Pre-doctoral research grant) and by the Spanish Ministry of Science and Innovation under Contract 'Challenges of Eye Tracking Off-the-Shelf (ChETOS)' with reference: PID2020-118014RB-I00en
dc.format.extent14 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.3390/s21206847
dc.identifier.issn1424-8220 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41212
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofSensors 2021, 21, 6847en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118014RB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/s21206847
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectEye trackingen
dc.subjectPupil center detectionen
dc.subjectConvolutional neural networksen
dc.titleAccurate pupil center detection in off-the-shelf eye tracking systems using convolutional neural networksen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication7d67c732-213a-47e0-82f8-81a897144cfa
relation.isAuthorOfPublicatione764f502-1d84-436f-81cd-97bfbe0240f4
relation.isAuthorOfPublication8f4eb99d-97ce-4dc9-b13a-18fcd2ab44e6
relation.isAuthorOfPublication42fe20f8-5341-4c0e-8686-333ce816adfd
relation.isAuthorOfPublicationd3bfd5bf-8426-455b-bcc4-897ddb0d4c2e
relation.isAuthorOfPublication.latestForDiscovery7d67c732-213a-47e0-82f8-81a897144cfa

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Larumbe_AccuratePupil.pdf
Size:
4.58 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: