A study of OWA operators learned in convolutional neural networks

dc.contributor.authorDomínguez Catena, Iris
dc.contributor.authorPaternain Dallo, Daniel
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2022-01-12T08:17:13Z
dc.date.available2022-01-12T08:17:13Z
dc.date.issued2021
dc.description.abstractOrdered Weighted Averaging (OWA) operators have been integrated in Convolutional Neural Networks (CNNs) for image classification through the OWA layer. This layer lets the CNN integrate global information about the image in the early stages, where most CNN architectures only allow for the exploitation of local information. As a side effect of this integration, the OWA layer becomes a practical method for the determination of OWA operator weights, which is usually a difficult task that complicates the integration of these operators in other fields. In this paper, we explore the weights learned for the OWA operators inside the OWA layer, characterizing them through their basic properties of orness and dispersion. We also compare them to some families of OWA operators, namely the Binomial OWA operator, the Stancu OWA operator and the expo-nential RIM OWA operator, finding examples that are currently impossible to generalize through these parameterizations.en
dc.description.sponsorshipThis work was funded by a predoctoral fellowship of the Research Service of Universidad Pública de Navarra, the Universidad Pública de Navarra under project PJUPNA1926, and the Spanish MICIN (PID2019-108392GB-I00 / AEI / 10.13039/501100011033).en
dc.format.extent20 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.3390/app11167195
dc.identifier.issn2076-3417
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41733
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofApplied Sciences, 11 (16), 7195en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/app11167195
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectOWA operatoren
dc.subjectAggregation functionsen
dc.subjectOrnessen
dc.subjectConvolutional neural networken
dc.subjectDeep learningen
dc.titleA study of OWA operators learned in convolutional neural networksen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication2ba22a83-13df-4d11-8e44-f9e97dbc13d0
relation.isAuthorOfPublicationca16c024-51e4-4f8f-b457-dc5307be32d9
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscovery2ba22a83-13df-4d11-8e44-f9e97dbc13d0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dominguez_StudyOwa.pdf
Size:
605.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: