Hierarchical spatio-temporal change-point detection

Date

2023

Authors

Cronie, Ottmar
Mateu, Jorge

Director

Publisher

Taylor and Francis Group
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto
No disponible en Scopus

Abstract

Detecting change-points in multivariate settings is usually carried out by analyzing all marginals either independently, via univariate methods, or jointly, through multivariate approaches. The former discards any inherent dependencies between different marginals and the latter may suffer from domination/masking among different change-points of distinct marginals. As a remedy, we propose an approach which groups marginals with similar temporal behaviors, and then performs group-wise multivariate change-point detection. Our approach groups marginals based on hierarchical clustering using distances which adjust for inherent dependencies. Through a simulation study we show that our approach, by preventing domination/masking, significantly enhances the general performance of the employed multivariate change-point detection method. Finally, we apply our approach to two datasets: (i) Land Surface Temperature in Spain, during the years 2000–2021, and (ii) The WikiLeaks Afghan War Diary data.

Description

Keywords

Clustering, Functional data, Land surface temperature, Multivariate analysis, Point patterns, Satellite images, Trace-variogram

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Moradi, M., Cronie, O., Pérez-Goya, U., Mateu, J. (2023) Hierarchical spatio-temporal change-point detection. The American Statistician, 1-11. https://doi.org/10.1080/00031305.2023.2191670.

item.page.rights

© 2023 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.