Hierarchical spatio-temporal change-point detection
dc.contributor.author | Moradi, Mohammad Mehdi | |
dc.contributor.author | Cronie, Ottmar | |
dc.contributor.author | Pérez Goya, Unai | |
dc.contributor.author | Mateu, Jorge | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.date.accessioned | 2023-08-22T18:51:04Z | |
dc.date.available | 2023-08-22T18:51:04Z | |
dc.date.issued | 2023 | |
dc.date.updated | 2023-08-22T18:42:46Z | |
dc.description.abstract | Detecting change-points in multivariate settings is usually carried out by analyzing all marginals either independently, via univariate methods, or jointly, through multivariate approaches. The former discards any inherent dependencies between different marginals and the latter may suffer from domination/masking among different change-points of distinct marginals. As a remedy, we propose an approach which groups marginals with similar temporal behaviors, and then performs group-wise multivariate change-point detection. Our approach groups marginals based on hierarchical clustering using distances which adjust for inherent dependencies. Through a simulation study we show that our approach, by preventing domination/masking, significantly enhances the general performance of the employed multivariate change-point detection method. Finally, we apply our approach to two datasets: (i) Land Surface Temperature in Spain, during the years 2000–2021, and (ii) The WikiLeaks Afghan War Diary data. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Moradi, M., Cronie, O., Pérez-Goya, U., Mateu, J. (2023) Hierarchical spatio-temporal change-point detection. The American Statistician, 1-11. https://doi.org/10.1080/00031305.2023.2191670. | en |
dc.identifier.doi | 10.1080/00031305.2023.2191670 | |
dc.identifier.issn | 0003-1305 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/46011 | |
dc.language.iso | eng | en |
dc.publisher | Taylor and Francis Group | en |
dc.relation.ispartof | The American Statistician 2023 | en |
dc.relation.publisherversion | https://doi.org/10.1080/00031305.2023.2191670 | |
dc.rights | © 2023 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License. | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Clustering | en |
dc.subject | Functional data | en |
dc.subject | Land surface temperature | en |
dc.subject | Multivariate analysis | en |
dc.subject | Point patterns | en |
dc.subject | Satellite images | en |
dc.subject | Trace-variogram | en |
dc.title | Hierarchical spatio-temporal change-point detection | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ccd658e9-d2cb-4166-9f2f-494f68e2bce3 | |
relation.isAuthorOfPublication | 003960f8-aa6d-47ec-bec1-6bc59c3c8edb | |
relation.isAuthorOfPublication.latestForDiscovery | ccd658e9-d2cb-4166-9f2f-494f68e2bce3 |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.78 KB
- Format:
- Item-specific license agreed to upon submission
- Description: