Hierarchical spatio-temporal change-point detection

dc.contributor.authorMoradi, Mohammad Mehdi
dc.contributor.authorCronie, Ottmar
dc.contributor.authorPérez Goya, Unai
dc.contributor.authorMateu, Jorge
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2023-08-22T18:51:04Z
dc.date.available2023-08-22T18:51:04Z
dc.date.issued2023
dc.date.updated2023-08-22T18:42:46Z
dc.description.abstractDetecting change-points in multivariate settings is usually carried out by analyzing all marginals either independently, via univariate methods, or jointly, through multivariate approaches. The former discards any inherent dependencies between different marginals and the latter may suffer from domination/masking among different change-points of distinct marginals. As a remedy, we propose an approach which groups marginals with similar temporal behaviors, and then performs group-wise multivariate change-point detection. Our approach groups marginals based on hierarchical clustering using distances which adjust for inherent dependencies. Through a simulation study we show that our approach, by preventing domination/masking, significantly enhances the general performance of the employed multivariate change-point detection method. Finally, we apply our approach to two datasets: (i) Land Surface Temperature in Spain, during the years 2000–2021, and (ii) The WikiLeaks Afghan War Diary data.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationMoradi, M., Cronie, O., Pérez-Goya, U., Mateu, J. (2023) Hierarchical spatio-temporal change-point detection. The American Statistician, 1-11. https://doi.org/10.1080/00031305.2023.2191670.en
dc.identifier.doi10.1080/00031305.2023.2191670
dc.identifier.issn0003-1305
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46011
dc.language.isoengen
dc.publisherTaylor and Francis Groupen
dc.relation.ispartofThe American Statistician 2023en
dc.relation.publisherversionhttps://doi.org/10.1080/00031305.2023.2191670
dc.rights© 2023 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectClusteringen
dc.subjectFunctional dataen
dc.subjectLand surface temperatureen
dc.subjectMultivariate analysisen
dc.subjectPoint patternsen
dc.subjectSatellite imagesen
dc.subjectTrace-variogramen
dc.titleHierarchical spatio-temporal change-point detectionen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationccd658e9-d2cb-4166-9f2f-494f68e2bce3
relation.isAuthorOfPublication003960f8-aa6d-47ec-bec1-6bc59c3c8edb
relation.isAuthorOfPublication.latestForDiscoveryccd658e9-d2cb-4166-9f2f-494f68e2bce3

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Moradi_HierarchicalSpatiotemporal.pdf
Size:
2.42 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Moradi_HierarchicalSpatiotemporal_MatCompl.pdf
Size:
14.98 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: