Publication: On the influence of interval normalization in IVOVO fuzzy multi-class classifier
dc.contributor.author | Uriz Martín, Mikel Xabier | |
dc.contributor.author | Paternain Dallo, Daniel | |
dc.contributor.author | Bustince Sola, Humberto | |
dc.contributor.author | Galar Idoate, Mikel | |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.contributor.department | Institute of Smart Cities - ISC | en |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.funder | Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13 | es |
dc.date.accessioned | 2021-03-04T13:30:47Z | |
dc.date.available | 2021-03-04T13:30:47Z | |
dc.date.issued | 2019 | |
dc.description | Trabajo presentado al Joint World Congress of the International-Fuzzy-Systems-Assoc (IFSA) and the Annual Conference of the North-American-Fuzzy-Information-Proc-Soc (NAFIPS) / 12th International Workshop on Constraint Programming and Decision Making (CoProd) (JUN 17-21, 2019) Lafayette, USA. | es_ES] |
dc.description.abstract | IVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO. | en |
dc.description.sponsorship | This work has been partially supported by the Spanish Ministry of Science and Technology under the project TIN2016-77356-P and the Public University of Navarre under the project PJUPNA13. | en |
dc.format.extent | 13 p. | |
dc.format.mimetype | application/pdf | en |
dc.identifier.doi | 10.1007/978-3-030-21920-8_5 | |
dc.identifier.isbn | 978-3-030-21920-8 (Electronic) | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/39329 | |
dc.language.iso | eng | en |
dc.publisher | Springer | en |
dc.relation.ispartof | Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham, 2019, pp. 44-57. ISBN 978-3-030-21920-8 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-P | en |
dc.relation.publisherversion | https://doi.org/10.1007/978-3-030-21920-8_5 | |
dc.rights | © Springer Nature Switzerland AG 2019 | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.subject | IVOVO | en |
dc.subject | Multi-class problems | en |
dc.subject | Interval normalization | en |
dc.title | On the influence of interval normalization in IVOVO fuzzy multi-class classifier | en |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |
dc.type.version | Versión aceptada / Onetsi den bertsioa | es |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a3183ffc-8d9f-4a63-8b70-e3e733e23f6b | |
relation.isAuthorOfPublication | ca16c024-51e4-4f8f-b457-dc5307be32d9 | |
relation.isAuthorOfPublication | 1bdd7a0e-704f-48e5-8d27-4486444f82c9 | |
relation.isAuthorOfPublication | 44c7a308-9c21-49ef-aa03-b45c2c5a06fd | |
relation.isAuthorOfPublication.latestForDiscovery | a3183ffc-8d9f-4a63-8b70-e3e733e23f6b |