Publication:
On the influence of interval normalization in IVOVO fuzzy multi-class classifier

dc.contributor.authorUriz Martín, Mikel Xabier
dc.contributor.authorPaternain Dallo, Daniel
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA13es
dc.date.accessioned2021-03-04T13:30:47Z
dc.date.available2021-03-04T13:30:47Z
dc.date.issued2019
dc.descriptionTrabajo presentado al Joint World Congress of the International-Fuzzy-Systems-Assoc (IFSA) and the Annual Conference of the North-American-Fuzzy-Information-Proc-Soc (NAFIPS) / 12th International Workshop on Constraint Programming and Decision Making (CoProd) (JUN 17-21, 2019) Lafayette, USA.es_ES]
dc.description.abstractIVOVO stands for Inverval-Valued One-Vs-One and is the combination of IVTURS fuzzy classifier and the One-Vs-One strategy. This method is designed to improve the performance of IVTURS in multi-class problems, by dividing the original problem into simpler binary ones. The key issue with IVTURS is that interval-valued confidence degrees for each class are returned and, consequently, they have to be normalized for applying a One-Vs-One strategy. However, there is no consensus on which normalization method should be used with intervals. In IVOVO, the normalization method based on the upper bounds was considered as it maintains the admissible order between intervals and also the proportion of ignorance, but no further study was developed. In this work, we aim to extend this analysis considering several normalizations in the literature. We will study both their main theoretical properties and empirical performance in the final results of IVOVO.en
dc.description.sponsorshipThis work has been partially supported by the Spanish Ministry of Science and Technology under the project TIN2016-77356-P and the Public University of Navarre under the project PJUPNA13.en
dc.format.extent13 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/978-3-030-21920-8_5
dc.identifier.isbn978-3-030-21920-8 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39329
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofFuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham, 2019, pp. 44-57. ISBN 978-3-030-21920-8en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-Pen
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-030-21920-8_5
dc.rights© Springer Nature Switzerland AG 2019en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectIVOVOen
dc.subjectMulti-class problemsen
dc.subjectInterval normalizationen
dc.titleOn the influence of interval normalization in IVOVO fuzzy multi-class classifieren
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublicationa3183ffc-8d9f-4a63-8b70-e3e733e23f6b
relation.isAuthorOfPublicationca16c024-51e4-4f8f-b457-dc5307be32d9
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscoverya3183ffc-8d9f-4a63-8b70-e3e733e23f6b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020100436_Uriz_InfluenceInterval.pdf
Size:
160.39 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: