A review of Active Learning methods for classification problems

dc.contributor.advisorTFEGalar Idoate, Mikel
dc.contributor.affiliationEscuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicaciónes_ES
dc.contributor.affiliationIndustria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoaeu
dc.contributor.authorBruned Alamán, Jorge
dc.date.accessioned2022-07-28T10:40:59Z
dc.date.issued2022
dc.date.updated2022-07-19T12:37:00Z
dc.description.abstractWithin the Artificial Intelligence field, and, more specifically, in the context of Machine Learning, the need for a set of labelled data is a common need to carry out the learning process of supervised models. However, the retrieval of such labelled data can be a rather arduous, expensive, and/or time-consuming task. In order to increase this process’ efficiency by reducing the number of required labelled data, the concept of Active Learning was introduced in the literature. The main idea behind it is that, given a set of unlabeled data, the most useful instances for the learning process are selected, therefore labelling only the most important examples, rather than the whole dataset or a random subset of it. This task is dealt with by means of different metrics, which allow us to quantify the representativeness and informativeness of each individual instance, with the objective of determining whether it should be labelled. In this project, we review several Active Learning methods for classification problems, implement the most relevant approaches and test them in a common experimental framework.en
dc.description.degreeGraduado o Graduada en Ingeniería Informática por la Universidad Pública de Navarra (Programa Internacional)es_ES
dc.description.degreeInformatika Ingeniaritzan Graduatua Nafarroako Unibertsitate Publikoan (Nazioarteko Programa)eu
dc.embargo.inicio2022-07-28
dc.embargo.lift2027-07-01
dc.embargo.terms2027-07-01
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/43608
dc.language.isoengen
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectSupervised learningen
dc.subjectClassificationen
dc.subjectData labellingen
dc.subjectUnlabelled dataen
dc.subjectActive learningen
dc.subjectSemi-supervised learningen
dc.titleA review of Active Learning methods for classification problemsen
dc.typeinfo:eu-repo/semantics/bachelorThesis
dspace.entity.typePublication
relation.isAdvisorTFEOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAdvisorTFEOfPublication.latestForDiscovery44c7a308-9c21-49ef-aa03-b45c2c5a06fd

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Jorge_Bruned_TFG.pdf
Size:
3.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: