Publication:
Study of different KNN aldorithm versions

Consultable a partir de

Date

2022

Authors

Sospedra Legarda, Javier

Publisher

Acceso abierto / Sarbide irekia
Trabajo Fin de Grado / Gradu Amaierako Lana

Project identifier

Abstract

K-Nearest Neighbor algorithm has been proven to be a simple and effective method for classification problems in machine learning. This Final Degree Project is based on the investigation of the KNN (K-Nearest Neighbors) algorithm introducing some changes that improve said algorithm: fuzzy logic, fuzzy intervals and evolutionary algorithms. First, a model using fuzzy logic and a model with fuzzy intervals are created, which improve to a certain extent the accuracy of the original model (KNN). Next, the evolutionary algorithm is used to try to improve the performance of the model further. The problem is the time required for the convergence of this last algorithm. Therefore, it is intended to make a comparison between all these models and see the difference between them in both performance and time.

Description

Keywords

Classification, KNN, Fuzzy, Evolutionary, Algorithm

Department

Faculty/School

Escuela Técnica Superior de Ingeniería Industrial, Informática y de Telecomunicación / Industria, Informatika eta Telekomunikazio Ingeniaritzako Goi Mailako Eskola Teknikoa

Degree

Graduado o Graduada en Ingeniería Informática por la Universidad Pública de Navarra (Programa Internacional), Informatika Ingeniaritzan Graduatua Nafarroako Unibertsitate Publikoan (Nazioarteko Programa)

Doctorate program

item.page.cita

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.