Diffusion models for remote sensing imagery semantic segmentation

dc.contributor.authorAyala Lauroba, Christian
dc.contributor.authorSesma Redín, Rubén
dc.contributor.authorAranda, Carlos
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA25-2022
dc.date.accessioned2024-10-09T09:58:02Z
dc.date.available2024-10-09T09:58:02Z
dc.date.issued2023-10-20
dc.date.updated2024-10-09T09:50:33Z
dc.description.abstractDenoising Diffusion Probabilistic Models have exhibited impressive performance for generative modelling of images. This paper aims to explore the potential of diffusion models for semantic segmentation tasks in the context of remote sensing. The major challenge of employing these models for semantic segmentation tasks is the generative nature of the model, which produces an arbitrary segmentation mask from a random noise input. Therefore, the diffusion process needs to be constrained to produce a segmentation mask that matches the target image. To address this issue, the denoising process is conditioned by utilizing the input image as a reference. In the experimental study, the proposed model is compared against other state-of-the-art semantic segmentation architectures using the Massachusetts Buildings Aerial dataset. The results of this study provide valuable insights into the potential of diffusion models for semantic segmentation tasks in the field of remote sensing.en
dc.description.sponsorshipThanks to the Government of Navarre for supporting under the industrial PhD program 2020 reference 0011-1408-2020-000008 Thanks to the Spanish Ministry of Science and Innovation for supporting under project PID2019-108392GB-I00 (AEI/10.13039/501100011033) and the Public University of Navarre under project PJUPNA25-2022.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAyala, C., Sesma, R., Aranda, C., Galar, M. (2023) Diffusion models for remote sensing imagery semantic segmentation. In [IEEE], 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 5654-5657). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/IGARSS52108.2023.10281461
dc.identifier.doi10.1109/IGARSS52108.2023.10281461
dc.identifier.isbn979-8-3503-2010-7
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52122
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartofIn [IEEE]. 2023 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Piscataway: Institute of Electrical and Electronics Engineers Inc.; 2023. p. 5654-5657
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1109/IGARSS52108.2023.10281461
dc.rights© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectBuilding segmentationen
dc.subjectDenoising diffusion probabilistic modelsen
dc.subjectRemote sensingen
dc.subjectSemantic segmentationen
dc.subjectUncertainty estimationen
dc.titleDiffusion models for remote sensing imagery semantic segmentationen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication4c0a0a12-02e3-479d-8562-b5d9a39bab40
relation.isAuthorOfPublication806651ab-0bba-4f13-9b29-2109c4b8b72a
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscovery44c7a308-9c21-49ef-aa03-b45c2c5a06fd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ayala_DiffusionModels.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: