Publication:
Predicting cancer incidence in regions without population-based cancer registries using mortality

Consultable a partir de

Date

2023

Director

Publisher

Oxford University Press
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/recolecta

Abstract

Cancer incidence numbers are routinely recorded by national or regional population-based cancer registries (PBCRs). However, in most southern European countries, the local PBCRs cover only a fraction of the country. Therefore, national cancer incidence can be only obtained through estimation methods. In this paper, we predict incidence rates in areas without cancer registry using multivariate spatial models modelling jointly cancer incidence and mortality. To evaluate the proposal, we use cancer incidence and mortality data from all the German states. We also conduct a simulation study by mimicking the real case of Spain considering different scenarios depending on the similarity of spatial patterns between incidence and mortality, the levels of lethality, and varying the amount of incidence data available. The new proposal provides good interval estimates in regions without PBCRs and reduces the relative error in estimating national incidence compared to one of the most widely used methodologies.

Keywords

Bayesian inference, Cancer incidence, Disease mapping, Multivariate spatial models, Predictions

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

The work was supported by Project PID2020-113125RB-I00/MCIN/AEI/10.13039/ 501100011033, Proyecto Jóvenes Investigadores PJUPNA2018-11 and Ayudas Predoctorales Santander UPNA 2021-2022.

© The Royal Statistical Society 2023. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.