Predicting cancer incidence in regions without population-based cancer registries using mortality

dc.contributor.authorRetegui Goñi, Garazi
dc.contributor.authorEtxeberria Andueza, Jaione
dc.contributor.authorRiebler, Andrea
dc.contributor.authorUgarte Martínez, María Dolores
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2018-11es
dc.date.accessioned2023-09-11T16:49:12Z
dc.date.available2023-09-11T16:49:12Z
dc.date.issued2023
dc.date.updated2023-09-11T16:28:27Z
dc.description.abstractCancer incidence numbers are routinely recorded by national or regional population-based cancer registries (PBCRs). However, in most southern European countries, the local PBCRs cover only a fraction of the country. Therefore, national cancer incidence can be only obtained through estimation methods. In this paper, we predict incidence rates in areas without cancer registry using multivariate spatial models modelling jointly cancer incidence and mortality. To evaluate the proposal, we use cancer incidence and mortality data from all the German states. We also conduct a simulation study by mimicking the real case of Spain considering different scenarios depending on the similarity of spatial patterns between incidence and mortality, the levels of lethality, and varying the amount of incidence data available. The new proposal provides good interval estimates in regions without PBCRs and reduces the relative error in estimating national incidence compared to one of the most widely used methodologies.en
dc.description.sponsorshipThe work was supported by Project PID2020-113125RB-I00/MCIN/AEI/10.13039/ 501100011033, Proyecto Jóvenes Investigadores PJUPNA2018-11 and Ayudas Predoctorales Santander UPNA 2021-2022.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationRetegui, G., Etxeberria, J., Riebler, A., Ugarte, M. D. (2023) Predicting cancer incidence in regions without population-based cancer registries using mortality. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1-16. https://doi.org/10.1093/jrsssa/qnad077.en
dc.identifier.doi10.1093/jrsssa/qnad077
dc.identifier.issn0964-1998
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46260
dc.language.isoengen
dc.publisherOxford University Pressen
dc.relation.ispartofJournal of the Royal Statistical Society. Series A: Statistics in Society, 2023en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1093/jrsssa/qnad077
dc.rights© The Royal Statistical Society 2023. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectBayesian inferenceen
dc.subjectCancer incidenceen
dc.subjectDisease mappingen
dc.subjectMultivariate spatial modelsen
dc.subjectPredictionsen
dc.titlePredicting cancer incidence in regions without population-based cancer registries using mortalityen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationfc50412c-5ed3-4ab9-92bf-ba966d7af279
relation.isAuthorOfPublication7770971e-9acf-45ee-bb1a-93bf8b5f1c73
relation.isAuthorOfPublicatione87ff19e-9d36-4286-989b-cafd391dff9d
relation.isAuthorOfPublication.latestForDiscovery7770971e-9acf-45ee-bb1a-93bf8b5f1c73

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Retegui_PredictingCancer.pdf
Size:
7.58 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Retegui_PredictingCancer_MatCompl.pdf
Size:
10.06 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: