Synplex: in silico modeling of the tumor microenvironment from multiplex images

dc.contributor.authorJiménez Sánchez, Daniel
dc.contributor.authorAriz Galilea, Mikel
dc.contributor.authorAndrea, Carlos de
dc.contributor.authorOrtiz de Solórzano, Carlos
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.date.accessioned2024-05-21T18:10:37Z
dc.date.available2024-05-21T18:10:37Z
dc.date.issued2023
dc.date.updated2024-05-21T17:41:00Z
dc.description.abstractMultiplex immunofluorescence is a novel, high-content imaging technique that allows simultaneous in situ labeling of multiple tissue antigens. This technique is of growing relevance in the study of the tumor microenvironment, and the discovery of biomarkers of disease progression or response to immune-based therapies. Given the number of markers and the potential complexity of the spatial interactions involved, the analysis of these images requires the use of machine learning tools that rely for their training on the availability of large image datasets, extremely laborious to annotate. We present Synplex, a computer simulator of multiplexed immunofluorescence images from user-defined parameters: i. cell phenotypes, defined by the level of expression of markers and morphological parameters; ii. cellular neighborhoods based on the spatial association of cell phenotypes; and iii. interactions between cellular neighborhoods. We validate Synplex by generating synthetic tissues that accurately simulate real cancer cohorts with underlying differences in the composition of their tumor microenvironment and show proof-of-principle examples of how Synplex could be used for data augmentation when training machine learning models, and for the in silico selection of clinically relevant biomarkers. Synplex is publicly available at https://github.com/djimenezsanchez/Synplex.en
dc.description.sponsorshipThis work was supported by Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion (MCIU/AEI/10.13039/50110011033) and FEDER funds UE under Grant RTI2018-094494-B-C22, Grant RTC-2017-6218-1, Grant PDI2021-122409OB-C22 and Grant TED2021-131300B-I00.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationJimenez-Sanchez, D., Ariz, M., De Andrea, C. E., Ortiz-De-Solórzano, C. (2023) Synplex: In silico Modeling of the tumor microenvironment from multiplex images. IEEE Transactions on Medical Imaging, 42(10), 3048-3058. https://doi.org/10.1109/TMI.2023.3273950.en
dc.identifier.doi10.1109/TMI.2023.3273950
dc.identifier.issn0278-0062
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/48148
dc.language.isoengen
dc.publisherIEEEen
dc.relation.ispartofIEEE Transactions on Medical Imaging 42(10), 2023, 3048-3058en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094494-B-C22/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//RTC-2017-6218-1/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//PDI2021-122409OB-C22/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-131300B-I00/
dc.relation.publisherversionhttps://doi.org/10.1109/TMI.2023.3273950
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectTumor microenvironmenten
dc.subjectMultiplex imagingen
dc.subjectSimulationen
dc.subjectModelingen
dc.subjectSpatial interactionsen
dc.titleSynplex: in silico modeling of the tumor microenvironment from multiplex imagesen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication9d2b9c4c-9ede-4367-9ad9-8987addfbff6
relation.isAuthorOfPublication.latestForDiscovery9d2b9c4c-9ede-4367-9ad9-8987addfbff6

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Jimenez_SynplexInSilico.pdf
Size:
4.88 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: