Publication:
Analysis of singular one-dimensional linear boundary value problems using two-point Taylor expansions

Consultable a partir de

Date

2020

Director

Publisher

University of Szeged (Hungría)
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/recolecta

Abstract

We consider the second-order linear differential equation (x2 − 1)y'' + f (x)y′ + g(x)y = h(x) in the interval (−1, 1) with initial conditions or boundary conditions (Dirichlet, Neumann or mixed Dirichlet–Neumann). The functions f, g and h are analytic in a Cassini disk Dr with foci at x = ±1 containing the interval [−1, 1]. Then, the two end points of the interval may be regular singular points of the differential equation. The two-point Taylor expansion of the solution y(x) at the end points ±1 is used to study the space of analytic solutions in Dr of the differential equation, and to give a criterion for the existence and uniqueness of analytic solutions of the boundary value problem. This method is constructive and provides the two-point Taylor appro-ximation of the analytic solutions when they exist.

Keywords

Second-order linear differential equations, Regular singular point, Boundary value problem, Frobenius method, Two-point Taylor expansion

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

The Ministerio de Economía y Competitividad (project MTM2017-83490-P) and Gobierno de Aragón (project E24_17R) are acknowledged by their financial support.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.