A biased-randomized learnheuristic for solving the team orienteering problem with dynamic rewards

dc.contributor.authorReyes-Rubiano, Lorena Silvana
dc.contributor.authorJuan Pérez, Ángel Alejandro
dc.contributor.authorBayliss, C.
dc.contributor.authorPanadero, Javier
dc.contributor.authorFaulín Fajardo, Javier
dc.contributor.authorCopado, P.
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2020-08-05T06:00:26Z
dc.date.available2020-08-05T06:00:26Z
dc.date.issued2020
dc.descriptionTrabajo presentado en el 22nd EURO Working Group on Transportation Meeting, EWGT 2019, 18-20 de septiembre de 2019, Barcelonaes_ES
dc.description.abstractIn this paper we discuss the team orienteering problem (TOP) with dynamic inputs. In the static version of the TOP, a fixed reward is obtained after visiting each node. Hence, given a limited fleet of vehicles and a threshold time, the goal is to design the set of routes that maximize the total reward collected. While this static version can be efficiently tackled using a biased-randomized heuristic (BR-H), dealing with the dynamic version requires extending the BR-H into a learnheuristic (BR-LH). With that purpose, a 'learning' (white-box) mechanism is incorporated to the heuristic in order to consider the variations in the observed rewards, which follow an unknown (black-box) pattern. In particular, we assume that: (i) each node in the network has a 'base' or standard reward value; and (ii) depending on the node's position inside its route, the actual reward value might differ from the base one according to the aforementioned unknown pattern. As new observations of this black-box pattern are obtained, the white-box mechanism generates better estimates for the actual rewards after each new decision. Accordingly, better solutions can be generated by using this predictive mechanism. Some numerical experiments contribute to illustrate these concepts.en
dc.format.extent8 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.trpro.2020.03.147
dc.identifier.issn2352-1465
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/37657
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofTransportation Research Procedia, 2020, 47, 680-687en
dc.relation.publisherversionhttps://doi.org/10.1016/j.trpro.2020.03.147
dc.rights© 2020 The Authors. This is an open access article under the CC BY-NC-ND license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectTransportationen
dc.subjectTeam orienteering problemen
dc.subjectLearnheuristicsen
dc.subjectDynamic inputsen
dc.subjectBiased randomizationen
dc.titleA biased-randomized learnheuristic for solving the team orienteering problem with dynamic rewardsen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3321bb6d-6082-4fb9-bb77-42de25cbf00a
relation.isAuthorOfPublication2f9b6dfd-9ac6-42b0-bff1-82079b8a03b8
relation.isAuthorOfPublication.latestForDiscovery3321bb6d-6082-4fb9-bb77-42de25cbf00a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020060235_Reyes_BiasedRandomized.pdf
Size:
516.9 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: