Super-resolution for Sentinel-2 images

dc.contributor.authorGalar Idoate, Mikel
dc.contributor.authorSesma Redín, Rubén
dc.contributor.authorAyala Lauroba, Christian
dc.contributor.authorAranda, Carlos
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2020-05-19T06:57:57Z
dc.date.available2020-05-19T06:57:57Z
dc.date.issued2019
dc.descriptionTrabajo presentado al PIA19+MRSS19 – Photogrammetric Image Analysis & Munich Remote Sensing Symposium, 2019, Muniches_ES
dc.descriptionIncluye pósteres
dc.description.abstractObtaining Sentinel-2 imagery of higher spatial resolution than the native bands while ensuring that output imagery preserves the original radiometry has become a key issue since the deployment of Sentinel-2 satellites. Several studies have been carried out on the upsampling of 20m and 60m Sentinel-2 bands to 10 meters resolution taking advantage of 10m bands. However, how to super-resolve 10m bands to higher resolutions is still an open problem. Recently, deep learning-based techniques has become a de facto standard for single-image super-resolution. The problem is that neural network learning for super-resolution requires image pairs at both the original resolution (10m in Sentinel-2) and the target resolution (e.g., 5m or 2.5m). Since there is no way to obtain higher resolution images for Sentinel-2, we propose to consider images from others sensors having the greatest similarity in terms of spectral bands, which will be appropriately pre-processed. These images, together with Sentinel-2 images, will form our training set. We carry out several experiments using state-of-the-art Convolutional Neural Networks for single-image super-resolution showing that this methodology is a first step toward greater spatial resolution of Sentinel-2 images.en
dc.format.extent8 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.5194/isprs-archives-XLII-2-W16-95-2019
dc.identifier.issn1682-1750
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/36919
dc.language.isoengen
dc.publisherInternational Society for Photogrammetry and Remote Sensingen
dc.relation.ispartofInternational Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2019, XLII-2/W16, 95-102en
dc.relation.publisherversionhttps://doi.org/10.5194/isprs-archives-XLII-2-W16-95-2019
dc.rights© Authors 2019. Creative Commons Attribution 4.0 International (CC BY 4.0)en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSuper-resolutionen
dc.subjectDeep learningen
dc.subjectSentinel-2en
dc.subjectImage enhancementen
dc.subjectConvolutional neural networken
dc.subjectOptical imagesen
dc.titleSuper-resolution for Sentinel-2 imagesen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication806651ab-0bba-4f13-9b29-2109c4b8b72a
relation.isAuthorOfPublication4c0a0a12-02e3-479d-8562-b5d9a39bab40
relation.isAuthorOfPublication.latestForDiscovery44c7a308-9c21-49ef-aa03-b45c2c5a06fd

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2020020310_Galar_SuperResolution.pdf
Size:
6.09 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Galar_SuperResolution_Poster.pdf
Size:
8.6 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: