A decision tree based approach with sampling techniques to predict the survival status of poly-trauma patients

dc.contributor.authorSanz Delgado, José Antonio
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorBustince Sola, Humberto
dc.contributor.authorGradín Purroy, Carlos
dc.contributor.authorBelzunegui Otano, Tomás
dc.contributor.departmentAutomatika eta Konputazioaeu
dc.contributor.departmentOsasun Zientziakeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentAutomática y Computaciónes_ES
dc.contributor.departmentCiencias de la Saludes_ES
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernua, PI-019/11es
dc.date.accessioned2020-10-15T11:31:40Z
dc.date.available2020-10-15T11:31:40Z
dc.date.issued2017
dc.description.abstractSurvival prediction of poly-trauma patients measure the quality of emergency services by comparing their predictions with the real outcomes. The aim of this paper is to tackle this problem applying C4.5 since it achieves accurate results and it provides interpretable models. Furthermore, we use sampling techniques because, among the 378 patients treated at the Hospital of Navarre, the number of survivals excels that of deaths. Logistic regressions are used in the comparison, since they are an standard in this domain.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Science and Technology under Projects TIN2016-77356-P and by the Health Department of the Navarre Government under Project PI-019/11.en
dc.format.extent16 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.2991/ijcis.2017.10.1.30
dc.identifier.issn1875-6883
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/38426
dc.language.isoengen
dc.publisherAtlantis Pressen
dc.relation.ispartofInternational Journal of Computational Intelligence Systems, 2017, 10(1), 440-455en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-P/
dc.relation.publisherversionhttps://doi.org/10.2991/ijcis.2017.10.1.30
dc.rights© 2017, the Authors. This is an open access article under the CC BY-NC license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectTrauma patientsen
dc.subjectSurvival predictionen
dc.subjectDecision treesen
dc.subjectImbalanced classification problemsen
dc.subjectSampling Techniquesen
dc.titleA decision tree based approach with sampling techniques to predict the survival status of poly-trauma patientsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication04db2b7d-89dc-4815-be4a-4b201cdce99b
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication091d3f77-8933-4c19-ab9b-201889c8e799
relation.isAuthorOfPublication.latestForDiscovery04db2b7d-89dc-4815-be4a-4b201cdce99b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
44_Sanz_DecisionTree.pdf
Size:
791.93 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: