Publication:
A fuzzy association rule-based classifier for imbalanced classification problems

dc.contributor.authorSanz Delgado, José Antonio
dc.contributor.authorSesma Sara, Mikel
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2021-12-28T10:45:07Z
dc.date.available2021-12-28T10:45:07Z
dc.date.issued2021
dc.description.abstractImbalanced classification problems are attracting the attention of the research community because they are prevalent in real-world problems and they impose extra difficulties for learning methods. Fuzzy rule-based classification systems have been applied to cope with these problems, mostly together with sampling techniques. In this paper, we define a new fuzzy association rule-based classifier, named FARCI, to tackle directly imbalanced classification problems. Our new proposal belongs to the algorithm modification category, since it is constructed on the basis of the state-of-the-art fuzzy classifier FARC–HD. Specifically, we modify its three learning stages, aiming at boosting the number of fuzzy rules of the minority class as well as simplifying them and, for the sake of handling unequal fuzzy rule lengths, we also change the matching degree computation, which is a key step of the inference process and it is also involved in the learning process. In the experimental study, we analyze the effectiveness of each one of the new components in terms of performance, F-score, and rule base size. Moreover, we also show the superiority of the new method when compared versus FARC–HD alongside sampling techniques, another algorithm modification approach, two cost-sensitive methods and an ensemble.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Economy and Competitiveness through the Spanish National Research (project PID2019-108392GB-I00/AEI/10.13039/501100011033) and by the Public University of Navarre under the project PJUPNA1926.en
dc.format.extent15 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.ins.2021.07.019
dc.identifier.issn0020-0255
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/41506
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofInformation Sciences, 577, 265-279en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/en
dc.relation.publisherversionhttp://doi.org/10.1016/j.ins.2021.07.019
dc.rights© 2021 The Authors. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationales_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAveraging aggregation functionsen
dc.subjectFuzzy association rule-based classifieren
dc.subjectImbalanced classification problemsen
dc.subjectLiften
dc.titleA fuzzy association rule-based classifier for imbalanced classification problemsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublication04db2b7d-89dc-4815-be4a-4b201cdce99b
relation.isAuthorOfPublication3a541442-8e82-49d5-903d-60e0aedbc1f6
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery04db2b7d-89dc-4815-be4a-4b201cdce99b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sanz_FuzzyAssociation.pdf
Size:
378.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: