Publication: A fuzzy association rule-based classifier for imbalanced classification problems
Consultable a partir de
Date
Director
Publisher
Abstract
Imbalanced classification problems are attracting the attention of the research community because they are prevalent in real-world problems and they impose extra difficulties for learning methods. Fuzzy rule-based classification systems have been applied to cope with these problems, mostly together with sampling techniques. In this paper, we define a new fuzzy association rule-based classifier, named FARCI, to tackle directly imbalanced classification problems. Our new proposal belongs to the algorithm modification category, since it is constructed on the basis of the state-of-the-art fuzzy classifier FARC–HD. Specifically, we modify its three learning stages, aiming at boosting the number of fuzzy rules of the minority class as well as simplifying them and, for the sake of handling unequal fuzzy rule lengths, we also change the matching degree computation, which is a key step of the inference process and it is also involved in the learning process. In the experimental study, we analyze the effectiveness of each one of the new components in terms of performance, F-score, and rule base size. Moreover, we also show the superiority of the new method when compared versus FARC–HD alongside sampling techniques, another algorithm modification approach, two cost-sensitive methods and an ensemble.
Keywords
Department
Faculty/School
Degree
Doctorate program
Editor version
Funding entities
© 2021 The Authors. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.