Hybrid modelling and identification of mechanical systems using Physics-Enhanced Machine Learning

dc.contributor.authorMerino Olagüe, Mikel
dc.contributor.authorIriarte Goñi, Xabier
dc.contributor.authorCastellano Aldave, Jesús Carlos
dc.contributor.authorPlaza Puértolas, Aitor
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
dc.date.accessioned2025-07-23T10:54:41Z
dc.date.available2025-07-23T10:54:41Z
dc.date.issued2025-11-15
dc.date.updated2025-07-23T10:46:54Z
dc.description.abstractObtaining mathematical models for mechanical systems is a key subject in engineering. These models are essential for calculation, simulation and design tasks, and they are usually obtained from physical principles or by fitting a black-box parametric input-output model to experimental data. However, both methodologies have some limitations: physics based models may not take some phenomena into account and black-box models are complicated to interpretate. In this work, we develop a novel methodology based on discrepancy modelling, which combines physical principles with neural networks to model mechanical systems with partially unknown or unmodelled physics. Two different mechanical systems with partially unknown dynamics are successfully modelled and the values of their physical parameters are obtained. Furthermore, the obtained models enable numerical integration for future state prediction, linearization and the possibility of varying the values of the physical parameters. The results show how a hybrid methodology provides accurate and interpretable models for mechanical systems when some physical information is missing. In essence, the presented methodology is a tool to obtain better mathematical models, which could be used for analysis, simulation and design tasks.en
dc.description.sponsorshipThis paper has been supported by the Public University of Navarre under grant PJUPNA2024-11690, and also by the Spanish Research Agency under grants PDC2023-145876-C22, PID2022-138510OB-C21, TED2021-131052B-C21. Open access funding provided by Universidad Pública de Navarra.
dc.format.mimetypeapplication/pdf
dc.identifier.citationMerino-Olagüe, M., Iriarte, X., Castellano-Aldave, C., Plaza, A. (2025) Hybrid modelling and identification of mechanical systems using Physics-Enhanced Machine Learning. Engineering Applications of Artificial Intelligence, 159(Part C), 1-15. https://doi.org/10.1016/j.engappai.2025.111762
dc.identifier.doi10.1016/j.engappai.2025.111762
dc.identifier.issn0952-1976
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/54436
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofEngineering Applications of Artificial Intelligence, 159(Part C), 1-15
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2023-145876-C22/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138510OB-C21/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131052B-C21/
dc.relation.publisherversionhttps://doi.org/10.1016/j.engappai.2025.111762
dc.rights© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMechanical system identificationen
dc.subjectHybrid modellingen
dc.subjectPhysics-enhanced neural networksen
dc.subjectParameter estimationen
dc.titleHybrid modelling and identification of mechanical systems using Physics-Enhanced Machine Learningen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication9a84c795-6aa6-4431-8574-d5614ef6ef3f
relation.isAuthorOfPublicatione7d5cd2e-5e19-4ef9-ba9b-7e3505379d96
relation.isAuthorOfPublication5a798097-8d20-4352-bc05-5139619aeb41
relation.isAuthorOfPublication236809d6-78a4-4e83-b534-b3981785886e
relation.isAuthorOfPublication.latestForDiscovery9a84c795-6aa6-4431-8574-d5614ef6ef3f

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Merino_Hybrid.pdf
Size:
2.44 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: