Hybrid modelling and identification of mechanical systems using Physics-Enhanced Machine Learning

Date

2025-11-15

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PDC2023-145876-C22/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-138510OB-C21/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/TED2021-131052B-C21/
Impacto
Google Scholar
No disponible en Scopus

Abstract

Obtaining mathematical models for mechanical systems is a key subject in engineering. These models are essential for calculation, simulation and design tasks, and they are usually obtained from physical principles or by fitting a black-box parametric input-output model to experimental data. However, both methodologies have some limitations: physics based models may not take some phenomena into account and black-box models are complicated to interpretate. In this work, we develop a novel methodology based on discrepancy modelling, which combines physical principles with neural networks to model mechanical systems with partially unknown or unmodelled physics. Two different mechanical systems with partially unknown dynamics are successfully modelled and the values of their physical parameters are obtained. Furthermore, the obtained models enable numerical integration for future state prediction, linearization and the possibility of varying the values of the physical parameters. The results show how a hybrid methodology provides accurate and interpretable models for mechanical systems when some physical information is missing. In essence, the presented methodology is a tool to obtain better mathematical models, which could be used for analysis, simulation and design tasks.

Description

Keywords

Mechanical system identification, Hybrid modelling, Physics-enhanced neural networks, Parameter estimation

Department

Ingeniería / Ingeniaritza / Institute of Smart Cities - ISC / Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

Merino-Olagüe, M., Iriarte, X., Castellano-Aldave, C., Plaza, A. (2025) Hybrid modelling and identification of mechanical systems using Physics-Enhanced Machine Learning. Engineering Applications of Artificial Intelligence, 159(Part C), 1-15. https://doi.org/10.1016/j.engappai.2025.111762

item.page.rights

© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.