Semiorders and continuous Scott–Suppes representations. Debreu’s Open Gap Lemma with a threshold

Date

2023

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI//PID2020-119703RB-I00/
  • AEI//PID2021-127799NB-I00/
Impacto
Google Scholar
No disponible en Scopus

Abstract

The problem of finding a utility function for a semiorder has been studied since 1956, when the notion of semiorder was introduced by Luce. But few results on continuity and no result like Debreu’s Open Gap Lemma, but for semiorders, was found. In the present paper, we characterize semiorders that accept a continuous representation (in the sense of Scott–Suppes). Two weaker theorems are also proved, which provide a programmable approach to Open Gap Lemma, yield a Debreu’s Lemma for semiorders, and enable us to remove the open-closed and closed-open gaps of a set of reals while keeping the threshold.

Description

Keywords

Continuity, Debreu's Open Gap Lemma, Scott-Suppes representation, Semiorders

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Research in Business and Economics - INARBE

Faculty/School

Degree

Doctorate program

item.page.cita

Estevan, A. (2023). Semiorders and continuous scott–suppes representations. Debreu’s open gap lemma with a threshold. Journal of Mathematical Psychology, 113, 102754. https://doi.org/10.1016/j.jmp.2023.102754

item.page.rights

© 2023 The Author(s). This is an open access article under the CC BY-NC-ND license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.