Publication:
Improving Michigan-style fuzzy-rule base classification generation using a Choquet-like Copula-based aggregation function

Consultable a partir de

Date

2021

Authors

Hinojosa-Cardenas, Edward
Sarmiento-Calisaya, Edgar
Camargo, Heloisa A.

Director

Publisher

CEUR Workshop Proceedings (CEUR-WS.org)
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/recolecta

Abstract

This paper presents a modification of a Michigan-style fuzzy rule based classifier by applying the Choquet-like Copula-based aggregation function, which is based on the minimum t-norm and satisfies all the conditions required for an aggregation function. The proposed new version of the algorithm aims at improving the accuracy in comparison to the original algorithm and involves two main modifications: replacing the fuzzy reasoning method of the winning rule by the one based on Choquet-like Copula-based aggregation function and changing the calculus of the fitness of each fuzzy rule. The modification proposed, as well as the original algorithm, uses a (1+1) evolutionary strategy for learning the fuzzy rulebase and it shows promising results in terms of accuracy, compared to the original algorithm, over ten classification datasets with different sizes and different numbers of variables and clases.

Keywords

Michigan-style algorithm, Fuzzy rule-based classification systems, Choquet-like copula-based aggregation function, Evolutionary strategy

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was supported by the Universidad Nacional de San Agustin de Arequipa under Project IBAIB-06-2019-UNSA and in part by the Spanish Ministry of Economy and Competitiveness through the Spanish National Research (project PID2019-108392GB-I00 / AEI / 10.13039/501100011033) and by the Public University of Navarre under the project PJUPNA1926.

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.