Image feature extraction using OD-monotone functions

dc.contributor.authorMarco Detchart, Cedric
dc.contributor.authorLópez Molina, Carlos
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorPagola Barrio, Miguel
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.date.accessioned2020-04-17T10:27:14Z
dc.date.available2020-04-17T10:27:14Z
dc.date.issued2018
dc.description.abstractEdge detection is a basic technique used as a preliminary step for, e.g., object extraction and recognition in image processing. Many of the methods for edge detection can be fit in the breakdown structure by Bezdek, in which one of the key parts is feature extraction. This work presents a method to extract edge features from a grayscale image using the so-called ordered directionally monotone functions. For this purpose we introduce some concepts about directional monotonicity and present two construction methods for feature extraction operators. The proposed technique is competitive with the existing methods in the literature. Furthermore, if we combine the features obtained by different methods using penalty functions, the results are equal or better results than stateof-the-art methods.en
dc.description.sponsorshipThis work is supported by the Spanish Ministry of Science (Project TIN2016-77356-P) and the Research Services of Universidad Publica de Navarra.en
dc.format.extent12 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1007/978-3-319-91473-2_23
dc.identifier.isbn978-3-319-91473-2
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/36747
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofMedina J. et al. (eds): Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 853. Springer, Chamen
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-77356-P/
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-319-91473-2_23
dc.rights© Springer International Publishing AG, part of Springer Nature 2018en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectEdge detectionen
dc.subjectFeature extractionen
dc.subjectOrdered directionally monotone functionsen
dc.subjectPenalty functionsen
dc.titleImage feature extraction using OD-monotone functionsen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationa5f4053a-a8c2-41e3-91c2-2b9dad6a72fd
relation.isAuthorOfPublicationb1df82f9-2ce4-488f-afe0-98e7f27ece58
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublicatione5ab14f5-4f2e-4000-a415-0a7c3b28ec78
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscoverya5f4053a-a8c2-41e3-91c2-2b9dad6a72fd

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cedric_ImageFeature.pdf
Size:
419.72 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: