ML-based PBCH symbol detection and equalization for 5G non-terrestrial networks

Date

2024-08-12

Authors

Mendonça, Marcele O. K.
González Garrido, Alejandro
Krivochiza, Jevgenij
Kumar, Sumit
Querol, Jorge
Grotz, Joel
Chatzinotas, Symeon

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

Impacto

Abstract

This paper delves into the application of Machine Learning (ML) techniques in the realm of 5G Non-Terrestrial Networks (5G-NTN), particularly focusing on symbol detection and equalization for the Physical Broadcast Channel (PBCH). As 5G-NTN gains prominence within the 3GPP ecosystem, ML offers significant potential to enhance wireless communication performance. To investigate these possibilities, we present ML-based models trained with both synthetic and real data from a real 5G over-the-satellite testbed. Our analysis includes examining the performance of these models under various Signal-to-Noise Ratio (SNR) scenarios and evaluating their effectiveness in symbol enhancement and channel equalization tasks. The results highlight the ML performance in controlled settings and their adaptability to real-world challenges, shedding light on the potential benefits of the application of ML in 5G-NTN.

Description

Keywords

Machine Learning, 5G Non-Terrestrial Networks, Satellite Communications, Channel estimation, Symbol Enhancement, Equalization, Physical Broadcast Channel

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza

Faculty/School

Degree

Doctorate program

item.page.cita

Larráyoz-Arrigote, I., Mendonça, M. O. K. Gonzalez-Garrido, A., Krivochiza, J., Kumar, S., Querol, J., Grotz, J., Chatzinotas, S. (2024) ML-based PBCH symbol detection and equalization for 5G non-terrestrial networks. In 2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom 2024) (pp. 119-124). IEEE. https://doi.org/10.1109/MeditCom61057.2024.10621238

item.page.rights

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.