Comunicaciones y ponencias de congresos DIEC - IEKS Biltzarretako komunikazioak eta txostenak

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 20 of 181
  • PublicationOpen Access
    Hydrogen-based energy storage for a distributed generation system
    (Spanish Hydrogen Association, 2016) San Martín Biurrun, Idoia; Berrueta Irigoyen, Alberto; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC
    One of the most typical distributed generation systems are electrical microgrid, which consist on small electrical grids, generally connected to the main grid, with a decentralized management structure. Electrical microgrids allow higher renewable energy integration in the grid, achieving a cost decrease and improving the grid quality [1]. These mi- crogrids incorporate renewable generation systems and energy consumers. Moreover, they have storage systems to balance generation and consumption as well as the exchanged power with the main grid. Traditionally, lead-acid batter- ies have been used in microgrids. However, these batteries have some drawbacks, being the most important its poor performance in partial state of charge, which is critical for a microgrid. A suitable option for the storage system is hy- drogen technology. These systems have high energy density, which makes the storage system able to assume seasonal variability of renewable resources. This paper proposes a sizing methodology for storage systems based on hydrogen for grid-tied electrical microgrids. This methodology optimizes the relationship between the storage system size and the consumption of grid power.
  • PublicationOpen Access
    Improvement of corona breakdown threshold (peak power handling) in smooth-profiled microstrip filters
    (2022) Ahmad, Jamil; Hussain, Jabir; Arregui Padilla, Iván; Martín Iglesias,  Petronilo; Arnedo Gil, Israel; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, the PPHCs of two filter design techniques, stepped-impedance (SI) and smooth-profile (SP), are presented for four design prototypes. Smooth-profiled filters feature smooth variations in the characteristic impedance profile, avoiding sharp edges, which accumulate electric fields. The absence of sharp edges in SP reduces the voltage magnification factor, which in turn improves the PPHC of the filter. The phenomenon of electric fields accumulation at the sharp corners of the SI filters is presented and compared with smooth transitions in SP filters. Furthermore, 1D graphs of electric field intensity are presented along the strip contour of the microstrip lines. Finally, SPARK3D results clearly demonstrate that SP filters can handle higher peak powers than their SI counterparts between critical pressure and ambient pressure, for all the studied designs.
  • PublicationOpen Access
    Temperature measurements on overhead lines using fiber Bragg grating sensors
    (IEEE, 2017) Barón, F.; Amortegui, F. J.; Daniel, P.; Varón, M.; Álvarez Botero, Germán Andrés; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper shows the results of temperature measurements on an overhead power transmission line segment under controlled conditions using Fiber Bragg Grating (FBG) sensors. An optical fiber with three FBG sensors enclosed in copper was characterized in temperature and then attached along an overhead transmission line to perform the measurements. It was found that variations due to wind and environment temperature can be as high as 30°C and that those variations increase as current and conductor temperature increases and sometimes exceeding the maximum allowable.
  • PublicationOpen Access
    Diseño robusto de filtros paso-banda de banda W en tecnología Gap Waveguide impresos en 3D
    (URSI, 2023) Santiago Arriazu, David; Tamayo-Domínguez, Adrián; Gómez Laso, Miguel Ángel; Lopetegui Beregaña, José María; Fernández-González, José Manuel; Martínez, Ramón; Arregui Padilla, Iván; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A 3D-printed bandpass filter for the W-band is proposed in this work. The use of the higher-order TE10n modes in groove gap waveguide (GGW) technology is analyzed and shown to ease the manufacturing requirements. The design example is a 5th-order Chebyshev filter at 94 GHz, which is easily fabricated by stereolithographic (SLA) 3D-printing (an additive manufacturing technique). The filter is silver coated once it is printed. Excellent measured performance is reported. The combination of higher-order modes, GGW technology and SLA 3D-printing seems to be a promising way of fabricating filters in W-band for high-capacity high data-rate communication systems.
  • PublicationOpen Access
    Integración de múltiples stubs en filtros de saltos de impedancias de alta selectividad
    (URSI, 2023) Gómez Laso, Miguel Ángel; Sami, Abdul; Lopetegui Beregaña, José María; Martin Iglesias, Petronilo; Álvarez Botero, Germán Andrés; Pons Abenza, Alejandro; Arregui Padilla, Iván; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    Rectangular waveguide commensurate-line stepped-impedance bandpass filters have been shown to have an increased fabrication robustness using conventional CNC milling. In this paper, their frequency response is improved by adding multiple transmission zeros at fully-controlled positions around the passband. The technique starts with the design of the filter without transmission zeros and only requires that one of the filter sections is slightly redesigned, while the rest keep unaltered, when lambda_g/¿¿ and 3*lambda_g/¿¿ stubs are included in the section to increase the overall filter selectivity around the passband. The design example is a 7th-order Chebyshev bandpass filter in Ku-band.
  • PublicationOpen Access
    Asymmetrical firing angle modulation for 12-pulse thyristor rectifiers supplying high-power electrolyzers
    (IEEE, 2023) Iribarren Zabalegui, Álvaro; Barrios Rípodas, Ernesto; Elizondo Martínez, David; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper presents an asymmetrical firing angle modulation strategy for 12-pulse thyristor rectifiers aimed at supplying high-power electrolyzers, which allows to reduce the size of the passive filter and the static compensator (STATCOM) required to comply with grid harmonic regulations and achieve unity power factor. Usually, 12-pulse thyristor rectifiers follow a symmetric modulation strategy in which the same firing angle is applied to both 6-pulse bridges. In this case, large passive ac-side inductances are required to reduce grid current harmonics, which increase the reactive power consumption and thus the required STATCOM size. However, this paper demonstrates that by applying different firing angles to the two 6-pulse bridges it is possible to comply with the harmonic regulation limits using smaller filtering inductances and therefore reducing the STATCOM size. The methodology to find the optimal firing angle values that should be applied in order to minimize the filtering inductance and the STATCOM size for a given electrolyzer is explained. This strategy is validated by simulation, and results show that the required filtering inductance and the apparent power of the STATCOM can be effectively reduced by 62% and 31%, respectively, using this asymmetrical firing angle modulation.
  • PublicationOpen Access
    Suppressing open stopband for terahertz periodic microstrip leaky-wave antennas
    (IEEE, 2023) Haddad, Thomas; Biurrun Quel, Carlos; Lu, Peng; Kaya, Hacer; Mohammad, Israa; Stöhr, Andreas; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This paper reports on a periodic microstrip Leaky-wave antenna (LWA). The open stopband issue is suppressed by altering the unit cell using a matching stub. The developed LWA is based on a grounded InP-substrate of 50 µm and has been fabricated and characterized between 0.23 to 0.33 THz. The dispersion diagram of the designed unit cell shows enhancement of the attenuation constant at the broadside frequency of 0.273 THz and about 50% less deflection at the broadside region on the Bloch impedance curves, consequently better impedance matching at the input. The simulated scattering parameters of the proposed LWA show that the return loss S11 is below 17 dB except for the broadside, which has a value of 13.8 dB. Furthermore, the beam steering capabilities of the antenna are simulated in the WR3.4 band and confirmed experimentally between 0.26 and 0.33 THz proving the beam direction to steer from −12° to +33°, respectively.
  • PublicationOpen Access
    A technology review and field testing of a soil water quality monitoring system
    (Springer, 2023) Afridi, Waqas A. K.; Akhter, Fowzia; Vitoria Pascual, Ignacio; Mukhopadhyay, Subhas C.; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Soil water quality is one of the most influential factors in ensuring the productivity of agricultural farms. Soil water quality and soil quality are hugely dependent on each other. Hence, it is essential to have a clear understanding of the essential soil quality parameters and the existing technologies to detect those parameters. This paper briefly discusses the vital soil quality parameters for their significance towards fostering sustainable agriculture. Moreover, a technology review of recent studies has been critically analyzed, and their strengths and weaknesses have been addressed. Moreover, an Internet of Things (IoT)- enabled low-cost, low-power soil monitoring system has been proposed to overcome the drawbacks of the existing technologies. The initially developed system has been deployed in a residential garden for preliminary testing and results. However, the findings of the proposed system satisfy the expected outcome as the testing soil parameters, such as soil moisture content and temperature, vary accordingly with the increase in depth underneath the surface. Also, environmental parameters such as ambient temperature, carbon dioxide and humidity vary expectedly over day and night. Data obtained from this system will be beneficial to derive realistic water-balance estimations and sustainable agriculture decision-making.
  • PublicationOpen Access
    Lossy mode resonances biosensor for the detection of C-reactive protein
    (Optica Publishing Group, 2016) Zubiate Orzanco, Pablo; Ruiz Zamarreño, Carlos; Sánchez Zábal, Pedro; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The fabrication and characterization of optical fiber biosensor based on Lossy Mode Resonances (LMR) to detect C-reactive protein (CRP) are presented. Indium tin oxide (ITO) coatings deposited on side-polished D-shaped optical fibers are used as LMR supporting coatings. The aptamer was immobilized on the ITO film using the Layer-by-Layer (LbL) nano-assembly process. The optical fiber sensor presented shows a high selectivity and low limit detection.
  • PublicationOpen Access
    Optical fiber sensors for asphalt structures monitoring
    (Optica Publishing Group, 2016) Bravo Acha, Mikel; Rota Rodrigo, Sergio; Leandro González, Daniel; Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Bravo Acha, A.; Bravo Navas, M.; Mitxelena, J. R.; Martínez Mazo, J. J.; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A novel optical fiber installation method was explored for asphalt monitoring. Glassfiber polymer encapsulated SMF was installed in the intermediate and surface layers in order to study the strain sensitivity with a distributed strain interrogator.
  • PublicationOpen Access
    A new ABS conductive material to develop fully 3D-printed patch antennas
    (IEEE, 2023) Jiménez Peña, Javier; Irigoyen, Joseba; Aresti Bartolomé, Maite; Ederra Urzainqui, Íñigo; Bravo Larrea, Javier; Iriarte Galarregui, Juan Carlos; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Additive manufacturing technology is rapidly overcoming some of its initial limitations and, thus, creating a very useful engineering option for prototyping complex geometries for a wide range of electronic devices. Based on important advantages such as turn-around, reliability, material waste reduction, and low implementation costs, the technology is being continuously developed and improved. This paper presents a completely 3D-printed microstrip patch antenna to demonstrate the feasibility of a new conductive Acrylonitrile Butadiene Styrene (ABS) material in the fabrication of three-dimensional (3D) antennas using additive manufacturing method. The prototype of the antenna has been fabricated using Raise3D E2 printer, commercial ABS and a new ABS filament developed by Naitec for dielectric and conductive parts of the antenna, respectively. The fabricated antenna is compact and light. Preliminary prototypes and fabrication techniques are presented.
  • PublicationOpen Access
    Building global competencies: a strategic approach to internationalization of engineering education
    (Eindhoven University of Technology and Fontys University of Applied Sciences, 2023) Berrueta Irigoyen, Alberto; Samanes Pascual, Javier; Parra Laita, Íñigo de la; Goicoechea Fernández, Javier; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    International mobility is an essential aspect of undergraduate education that enables students to acquire the necessary competences required by the European Higher Education Area (EHEA). However, small universities such as the Public University of Navarre (UPNA), which has approximately 9,000 bachelor's students, face challenges in providing effective mobility opportunities. The most significant hurdles include offering attractive mobility experiences to students and establishing mobility agreements with other universities. Nonetheless, the reduced size of UPNA provides some potential benefits, such as more personalized advice for students and better knowledge of the available destinations. This article discusses the internationalization strategy implemented by the Faculty of Industrial and ICT Engineering at UPNA, which has enabled over 25% of its students to participate in a mobility experience, resulting in a high satisfaction rate. This contribution provides valuable insights into how smaller universities can successfully offer international mobility programmes to their students.
  • PublicationOpen Access
    Integrated platform for microfluidics based cell culture applications
    (Springer, 2023) Dudala, Sohan; Dubey, Satish K.; Javed, Arshad; Ozcariz Celaya, Aritz; Matías Maestro, Ignacio; Goel, Sanket; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The ongoing developments in the field of microfluidics-based cell culture have led to a significant interest in systems for their visualization and control. The existing cell culture systems are limiting due to cost, complexity, and the need for regular user interventions. This work delves into developing a cost-effective, portable, and automated cell culture and monitoring platform with fluid management and integrated lens free imaging capabilities. The developed system, with a small footprint, weighing approximately 1.7 kg, is highly portable and can be used with existing CO2 incubator systems. With the component cost of the developed system being approximately USD 300, the platform is highly affordable for an integrated cell imaging and automated media replacement system. The system can be used with conventional culture dishes as well as microfluidic systems.
  • PublicationOpen Access
    A novel ku-band circularly-polarized horn antenna based on a ridged wall
    (IEEE, 2023) Marzo Oyarbide, Andoni; Teberio Berdún, Fernando; Teniente Vallinas, Jorge; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this paper, a novel wideband (31.5 % bandwidth) circularly-polarized antenna based on a ridged wall is presented. A pair of ridges on the inner wall of the horn serves as an inbuilt polarizer, which can generate left-hand or right-hand circular polarization without any additional polarizer. The ridged wall is placed at 45° with respect to the input port linearly polarized wave to generate a 90° phase delay and obtain the desired circular polarization at the aperture. The simulated results show that the antenna works great in the whole Ku satellite band (from 10.7 to 14.7 GHz) with more than 20 dB return loss and below 1 dB axial ratio. The antenna can be fabricated using traditional computer numerical control machining techniques or the new 3D metal additive manufacturing processes.
  • PublicationOpen Access
    One-year analysis of road condition using FBG arrays
    (SPIE, 2023) Corera Orzanco, Íñigo; Pradas Martínez, Javier; Leandro González, Daniel; Bravo Acha, Mikel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA06-2022
    In this work, it is presented an analysis of FBG arrays installed in a public road. The arrays were installed in a newly paved urban road and were monitored for more than one year. The study evidences the permanent deformation of the wearing course and the degradation of the reflected spectra of the sensors.
  • PublicationOpen Access
    Women, Science and Technology Chair—Promoting women’s careers in stem fields
    (IEEE, 2023) Pérez Artieda, Miren Gurutze; Gómez Fernández, Marisol; Aranguren Garacochea, Patricia; Barrenechea Tartas, Edurne; Catalán Ros, Leyre; Díaz Lucas, Silvia; Jurío Munárriz, Aránzazu; Martínez Ramírez, Alicia; Millor Muruzábal, Nora; Ortiz Nicolás, Amalia; San Martín Biurrun, Idoia; Estadística, Informática y Matemáticas; Ingeniería; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    The Chair of Women, Science and Technology of the Universidad Pública de Navarra (UPNA) aims to increase the participation of women in the fields of science and technology. Scientific culture and dissemination are the main focus of the different actions of the Chair. These activities include: the theatrical performance "Yo quiero ser científica", experimental workshops and conferences and exhibitions for all audiences and ages. More than 6.000 people have seen the play, more than 1.500 secondary school students have participated in the workshops and the audiovisual material has received more than 20.000 visits.
  • PublicationOpen Access
    Multicore fiber sensors for strain measurement towards traffic monitoring
    (SPIE, 2023) Sánchez González, Arturo; Pradas Martínez, Javier; Corera Orzanco, Íñigo; Bravo Acha, Mikel; Leandro González, Daniel; Dauliat, Romain; Jamier, Raphael; Roy, Philippe; Pérez Herrera, Rosa Ana; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA06-2022
    In this work, two new interferometric sensors based on multicore optical fibers for the measurement of strain with the ultimate goal of traffic monitoring are presented. The operating principle of each sensor relied on the monitoring of the phase shift difference accumulated between the supermodes of the structure of the multicore segment in a full round trip. The strain characterization for both sensors resulted in a linear response, with sensitivities of -4.073·10-3 rad/με and - 4.389·10-3 rad/με for the aligned and V-shaped cases respectively, and one-hour instabilities below 4.6·10-3 rad with a 95% confidence level. These results suggest its feasibility in applications requiring high sensitivities over very wide strain ranges, such as heavy-vehicle traffic monitoring. To corroborate the hypothesis, both sensors were integrated into the pavement and their response to the traffic was analyzed.
  • PublicationOpen Access
    Erbium-doped fiber ring cavity for the measurement of refractive index variations
    (SPIE, 2023) Pérez Herrera, Rosa Ana; Soares, Liliana; Novais, Susana; Frazão, Orlando; Silva, Susana; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In this work, an erbium-doped fiber ring cavity based on a 3dB optical coupler for refractive index measurements is presented and experimentally verified. This interrogation system, based on a 1 x 2 optical coupler, uses one of these output ports to increase the reflected optical power by means of a fiber Bragg Grating (FBG), used as a reflector. Moreover, the other output port is used as a refractive index sensing head. A spectral analysis of this interrogator system as well as a fiber cavity ring refractive index sensor characterization are carried out. Finally, an experimental comparison of the refractive index sensor range when the 3dB coupler is replace by a 1x3 one is also presented.
  • PublicationOpen Access
    Fiber optic mirror fabrication using general-purpose metallic pigments
    (SPIE, 2023) Jaso Gallego, Isabel; Mejia-Olivo, Edison; Bravo Acha, Mikel; Leandro González, Daniel; López-Amo Sáinz, Manuel; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA06-2022
    In this work, the potential of using general-purpose paints to fabricate highly reflective, low-cost optical mirrors is evaluated. The study shows that high-reflectivity mirrors can be created in standard single-mode fiber in a reliable, simple and economic manner using the appropriate metallic paint. Preliminary results confirm that the grain size of the metallic particles is a crucial factor in the reflective behavior, together with the substrate in which the particles are suspended. Moreover, interferometric patterns have been observed in some cases, which could lead to the creation of simple and economic fiber optic sensors.
  • PublicationOpen Access
    Measurement of paracetamol concentration using a fiber laser system
    (IEEE, 2023) Soares, Liliana; Pérez Herrera, Rosa Ana; Novais, Susana; Ferreira, António; Frazão, Orlando; Silva, Susana; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    A linear fiber laser system for measurements of paracetamol concentration is experimentally demonstrated. The cavity is based on a fiber loop mirror and an FBG centered at 1567.8 nm. The sensing head corresponds to a refractometric sensor, whose which principle of operation is based on Fresnel reflection in the fiber tip (FBG side). The system works at detected variations of paracetamol concentrations with a sensitivity of [8.74± 0.34)× 10-5] µW/(g/kg) and a resolution of 2.77 g/kg. The results prove that the fiber laser system could be an asset for processing industries, specifically for non-invasive and real-time measurements of concentration.