Multi-temporal data augmentation for high frequency satellite imagery: a case study in Sentinel-1 and Sentinel-2 building and road segmentation

dc.contributor.authorAyala Lauroba, Christian
dc.contributor.authorAranda Magallón, Coral
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2023-05-30T09:38:56Z
dc.date.available2023-05-30T09:38:56Z
dc.date.issued2022
dc.date.updated2023-05-30T08:29:54Z
dc.description.abstractSemantic segmentation of remote sensing images has many practical applications such as urban planning or disaster assessment. Deep learning-based approaches have shown their usefulness in automatically segmenting large remote sensing images, helping to automatize these tasks. However, deep learning models require large amounts of labeled data to generalize well to unseen scenarios. The generation of global-scale remote sensing datasets with high intraclass variability presents a major challenge. For this reason, data augmentation techniques have been widely applied to artificially increase the size of the datasets. Among them, photometric data augmentation techniques such as random brightness, contrast, saturation, and hue have been traditionally applied aiming at improving the generalization against color spectrum variations, but they can have a negative effect on the model due to their synthetic nature. To solve this issue, sensors with high revisit times such as Sentinel-1 and Sentinel-2 can be exploited to realistically augment the dataset. Accordingly, this paper sets out a novel realistic multi-temporal color data augmentation technique. The proposed methodology has been evaluated in the building and road semantic segmentation tasks, considering a dataset composed of 38 Spanish cities. As a result, the experimental study shows the usefulness of the proposed multi-temporal data augmentation technique, which can be further improved with traditional photometric transformations.en
dc.description.sponsorshipChristian Ayala was partially supported by the Government of Navarra under the industrial Ph.D. program 2020 reference 0011-1408-2020-000008. Mikel Galar was partially supported by Tracasa Instrumental S.L. under the project OTRI 2020- 901-156, and by the Spanish MICIN (PID2019-108392GB-I00 / AEI / 10.13039/501100011033).en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationAyala, C., Aranda, C., & Galar, M. (2022). Multi-temporal data augmentation for high frequency satellite imagery: A case study in sentinel-1 and sentinel-2 building and road segmentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2022, 25-32. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-25-2022en
dc.identifier.doi10.5194/isprs-archives-XLIII-B3-2022-25-2022
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/45358
dc.language.isoengen
dc.publisherISPRSen
dc.relation.ispartofThe international archives of the photogrammetry, remote sensing and spatial information sciences. XXIV ISPRS Congress: ISPRS; 2022. p.25-32en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//0011-1408-2020-000008/
dc.relation.publisherversionhttps://doi.org/10.5194/isprs-archives-XLIII-B3-2022-25-2022
dc.rights© Author(s) 2022. CC BY 4.0 License.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectSentinel-2en
dc.subjectSentinel-1en
dc.subjectMulti-temporalen
dc.subjectRemote sensingen
dc.subjectRoad network extractionen
dc.subjectBuilding footprint detectionen
dc.subjectDeep learningen
dc.subjectConvolutional neural networksen
dc.titleMulti-temporal data augmentation for high frequency satellite imagery: a case study in Sentinel-1 and Sentinel-2 building and road segmentationen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication4c0a0a12-02e3-479d-8562-b5d9a39bab40
relation.isAuthorOfPublicationc21f1ad5-e244-41c1-83fa-3aabfbfcc5f7
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscovery4c0a0a12-02e3-479d-8562-b5d9a39bab40

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ayala_MultitemporalData.pdf
Size:
4.7 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: