Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics

dc.contributor.authorPeraza Alemán, Carlos Miguel
dc.contributor.authorLópez Maestresalas, Ainara
dc.contributor.authorJarén Ceballos, Carmen
dc.contributor.authorRuiz de Galarreta, José Ignacio
dc.contributor.authorBarandalla, Leire
dc.contributor.authorArazuri Garín, Silvia
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.contributor.departmentInstitute on Innovation and Sustainable Development in Food Chain - ISFOODen
dc.date.accessioned2025-03-25T08:21:36Z
dc.date.issued2025-03-14
dc.date.updated2025-03-25T08:16:15Z
dc.description.abstractThis study investigated the potential of near-infrared hyperspectral imaging (NIR-HSI) for the prediction of acrylamide content in potato chips. A total of 300 tubers from two potato varieties (Agria and Jaerla) grown in two seasons and processed under the same frying conditions were analysed. Partial Least Square Regression (PLSR) and Support Vector Machine Regression (SVMR), combined with a logarithmic transformation of the acrylamide levels, were applied to develop predictive models. The most optimal outcomes for PLSR yielded R2 p: 0.85, RMSEP: 201 μg/kg and RPD: 2.53, while for SVMR yielded R2 p: 0.80, RMSEP: 229 μg/kg and RPD: 2.22. Furthermore, the selection of significant wavelengths enabled an 87.95 % reduction in variables without affecting the model’s accuracy. Finally, spatial mapping of acrylamide content was conducted on all chips in the external validation set. This method provides both quantification and visualization capabilities, thus enhancing quality control for acrylamide identification in processed potatoes.en
dc.description.sponsorshipThis work was supported by the Ministerio de Ciencia, Innovación y Universidades (MICIU/AEI /10.13039/501100011033), Spain, project: PID2019-109790RR-C22 and the predoctoral grant (PRE2020-094533) associated to it.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationPeraza-Alemán, C. M., López-Maestresalas, A., Jarén, C., Ruiz de Galarreta, J. I., Barandalla, L., Arazuri, S. (2025). Mapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometrics. Food Chemistry, 479, 1-11. https://doi.org/10.1016/j.foodchem.2025.143794.
dc.identifier.doi10.1016/j.foodchem.2025.143794
dc.identifier.issn0308-8146
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/53805
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofFood Chemistry 479 (2025 ) 143794
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109790RR-C22/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.foodchem.2025.143794
dc.rights© 2025 The Authors. This is an open access article under the CC BY-NC license.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectSpatial distributionen
dc.subjectMachine learningen
dc.subjectNIR-HSIen
dc.subjectSolanum tuberosum L.en
dc.subjectPLSRen
dc.titleMapping acrylamide content in potato chips using near-infrared hyperspectral imaging and chemometricsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication04ecd421-6628-4403-b3d5-ffd1a1c8628e
relation.isAuthorOfPublicationbc607da1-a1ab-4216-be92-08409b033643
relation.isAuthorOfPublication5e3fa1e8-fa68-40e6-aa60-e3be4219af67
relation.isAuthorOfPublication403098c5-bb6e-4bf1-93be-041e44738d0d
relation.isAuthorOfPublication71b05622-8efe-4896-aece-d33f9e5c246c
relation.isAuthorOfPublication.latestForDiscovery403098c5-bb6e-4bf1-93be-041e44738d0d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Peraza_MappingAcrylamide.pdf
Size:
7.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: