Tuning selection impact on kriging-aided in-building path loss modeling

Date

2022

Authors

Diago Mosquera, Melissa
Aragón Zavala, Alejandro
Rodríguez Corbo, Fidel Alejandro
Shubair, Raed M.

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto

Abstract

How do you know you select enough tuning dataset from measurements to guarantee model prediction accuracy? Tuning datasets are often selected based on simple random sampling with predefined rates. Usually, these rates are determined as a/b, where a% of the data goes to training and the remaining b% goes to testing. But it is not clear to what extent tuning dataset in order to minimize the estimation path loss errors. It is, thus, required to analyze the performance of channel modeling by selecting—among all measurement samples—appropriate tuning dataset. Using radio measurements and deterministic Ray Launching techniques to collect enough reliable samples, this letter analyzes the impact of tuning dataset selection—expressed in terms of the mean absolute error and cost—on a novel Kriging-aided in-building measurement-based path loss prediction model.

Description

Keywords

Indoor path loss model, Kriging, Radio propagation, Tuning dataset

Department

Estadística, Informática y Matemáticas / Ingeniería Eléctrica, Electrónica y de Comunicación / Estatistika, Informatika eta Matematika / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

item.page.cita

Diago-Mosquera, M., Aragon-Zavala, A., Rodriguez-Corbo, F. A., Celaya-Echarri, M., Shubair, R., & Azpilicueta, L. (2022). Tuning selection impact on kriging-aided in-building path loss modeling. IEEE Antennas and Wireless Propagation Letters, 21(1), 84-88. https://doi.org/10.1109/LAWP.2021.3118673

item.page.rights

This work is licensed under a Creative Commons Attribution 4.0 License.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.